施密特觸發器

施密特觸發器

數字電子技術
施密特觸發器(Schmidt trigger)是包含正回授的比較器電路。它也有兩個穩定狀态,但與一般觸發器不同的是,施密特觸發器采用電位觸發方式,其狀态由輸入信号電位維持;對于負向遞減和正向遞增兩種不同變化方向的輸入信号,有不同的阈值電壓。施密特觸發器可作為波形整形電路,能将模拟信号波形整形為數字電路能夠處理的方波波形,而且由于施密特觸發器具有滞回特性,所以可用于抗幹擾,其應用包括在開回路配置中用于抗擾,以及在閉回路正回授/負回授配置中用于實現多諧振蕩器。
    中文名:施密特觸發器 外文名:Schmidt trigger 适用領域: 所屬學科: 用途:輸出特性的門電路 種類:阈值開關電路 主要用具:二極管,晶體管 應用:脈沖技術 觸發原理:電壓高低 傳輸特點:波形畸變 最終效果:使畸形恢複原狀

基本介紹

門電路有一個阈值電壓,當輸入電壓從低電平上升到阈值電壓或從高電平下降到阈值電壓時電路的狀态将發生變化。施密特觸發器是一種特殊的門電路,與普通的門電路不同,施密特觸發器有兩個阈值電壓,分别稱為正向阈值電壓和負向阈值電壓。在輸入信号從低電平上升到高電平的過程中使電路狀态發生變化的輸入電壓稱為正向阈值電壓,在輸入信号從高電平下降到低電平的過程中使電路狀态發生變化的輸入電壓稱為負向阈值電壓。正向阈值電壓與負向阈值電壓之差稱為回差電壓。

當任何波形的信号進入電路時,輸出在正、負飽和之間跳動,産生方波或脈波輸出。不同于比較器,施密特觸發電路有兩個臨界電壓且形成一個滞後區,可以防止在滞後範圍内之噪聲幹擾電路的正常工作。如遙控接收線路,傳感器輸入電路都會用到它整形。

它是一種阈值開關電路,具有突變輸入——輸出特性的門電路。這種電路被設計成阻止輸入電壓出現微小變化(低于某一阈值)而引起的輸出電壓的改變。

利用施密特觸發器狀态轉換過程中的正反饋作用,可以把邊沿變化緩慢的周期性信号變換為邊沿很陡的矩形脈沖信号。輸入的信号隻要幅度大于vt+,即可在施密特觸發器的輸出端得到同等頻率的矩形脈沖信号。

當輸入電壓由低向高增加,到達V+時,輸出電壓發生突變,而輸入電壓Vi由高變低,到達V-,輸出電壓發生突變,因而出現輸出電壓變化滞後的現象,可以看出對于要求一定延遲啟動的電路,它是特别适用的.

從傳感器得到的矩形脈沖經傳輸後往往發生波形畸變。當傳輸線上的電容較大時,波形的上升沿将明顯變緩;當傳輸線較長,而且接受端的阻抗與傳輸線的阻抗不匹配時,在波形的上升沿和下降沿将産生振蕩現象;當其他脈沖信号通過導線間的分布電容或公共電源線疊加到矩形脈沖信号時,信号上将出現附加的噪聲。無論出現上述的那一種情況,都可以通過用施密特反相觸發器整形而得到比較理想的矩形脈沖波形。隻要施密特觸發器的vt+和vt-設置得合适,均能收到滿意的整形效果。

實現

隧道二極管

施密特觸發器可以利用簡單的隧道二極管(英語:tunnel diode)實現,這種二極管的伏安特性在第一象限中是一條“N”形曲線。振蕩輸入會使二極管的伏安特性從“N”形曲線的上升分支移動到另一分支,然後在輸入值超越上升和下降翻轉阈值時回到起點。不過,這類施密特觸發器的性能可以利用基于晶體管的元件來提升,因為基于晶體管的元件可以通過非常直接的利用正反饋來提升翻轉性能。

比較器

施密特觸發器常用接入正反饋的比較器來實現。對于這一電路,翻轉發生在接近地的位置,遲滞量由R1與R2的阻值控制。

比較器提取了兩個輸入之差的符号。當非反相(+)輸入的電壓高于反相(-)輸入的電壓時,比較器輸出翻轉到高工作電壓+Vs;當非反相(+)輸入的電壓低于反相(-)輸入的電壓時,比較器輸出翻轉到低工作電壓-Vs。這裡的反相(-)輸入是接地的,因此這裡的比較器實現了函數符号,,具有二态輸出的特性,隻有高和低兩種狀态,當非反相(+)端連續輸入時總有相同的符号。

由于電阻網絡将施密特觸發器的輸入端(即比較器的非反相(+)端)和比較器的輸出端連接起來,施密特觸發器的表現類似比較器,能在不同的時刻翻轉電平,這取決于比較器的輸出是高還是低。若輸入是絕對值很大的負輸入,輸出将為低電平;若輸入是絕對值很大的正輸入,輸出将為高電平,這就實現了非反相施密特觸發器的功能。

不過對于取值處于兩個阈值之間的輸入,輸出狀态同時取決于輸入和輸出。例如,如果施密特觸發器的當前狀态是高電平,輸出會處于正電源+Vs上,。這時V+就會成為Vin和+Vs間的分壓器。在這種情況下,隻有當V+=0(接地)時,比較器才會翻轉到低電平。由電流守恒,可知此時滿足下列關系:

因此必須降低到低于-R1Vs/R2時,輸出才會翻轉狀态。一旦比較器的輸出翻轉到−Vs,翻轉回高電平的阈值就變成了+R1Vs/R2。這樣,電路就形成了一段圍繞原點的翻轉電壓帶,而觸發電平是±R1Vs/R2。。隻有當輸入電壓上升到電壓帶的上限,輸出才會翻轉到高電平;隻有當輸入電壓下降到電壓帶的下限,輸出才會翻轉回低電平。若R1為0,R2為無窮大(即開路)。電壓帶的寬度會壓縮到0,此時電路就變成一個标準比較器。輸出特性如右圖所示。阈值

由R1Vs/R2給出,輸出

的最大值是電源軌。實際配置的非反相施密特觸發電路如下圖所示。

輸出特性曲線與上述基本配置的輸出曲線形狀相同,阈值大小也與上述配置滿足相同的關系。不同點在于上例的輸出電壓取決于供電電源,而這一電路的輸出電壓由兩個齊納二極管确定。在這一配置中,輸出電平可以通過選擇适宜的齊納二極管來改變,而輸出電平對于電源波動具有抵抗力,也就是說輸出電平提高了比較器的電源電壓抑制比(PSRR)。電阻

3用于限制通過二極管的電流,電阻

4将比較器的輸入漏電流引起的輸入失調電壓降低到最小。

兩個晶體管

在使用正反饋配置實現的施密特觸發器中,比較器自身可以實現的大部分複雜功能都沒有使用。因此,電路可以用兩個交叉耦合的晶體管來實現(即晶體管可以用另外一種方式來實現輸入級)。基于2個晶體管的施密特觸發電路如下圖所示。通路RC1R1R2設定了晶體管T2的基極電壓,不過,這一分壓通路會受到晶體管T1的影響,如果T1開路,通路将會提供更高的電壓。因此,在兩個狀态間翻轉的阈值電壓取決于觸發器的現态。

對于如上所示的NPN晶體管,當輸入電壓遠遠低于共射極電壓時,T1不會導通。晶體管T2的基極電壓由上述分壓電路決定。由于接入負反饋,共射極上所加的電壓必須幾乎與分壓電路上所确定的電壓幾乎一樣高,這樣就能使T2導通,并且觸發器的輸出是低電平狀态。當輸入電壓(T1基極電壓)上升到比電阻RE上的電壓(射極電壓)稍高時,T1将會導通。當T1開始導通時,T2不再導通,因為此時分壓通路提供的電壓低于T2基極電壓,而射極電壓不會降低,因為T1此時消耗通過RE的電流。此時T2不導通,觸發器過渡到高電平狀态。

此時觸發器處于高電平狀态,若輸入電壓降低得足夠多,則通過T1的電流會降低,這會降低T2的共射極電壓并提高其基極電壓。當T2開始導通時,RE上的電壓上升,然後會降低T1的基極-射極電位,T1不再導通。

在高電平狀态時,輸出電壓接近V+;但在低電平狀态時,輸出電壓仍會遠遠高于V−。因此在這種情況下,輸出電壓不夠低,無法達到邏輯低電平,這就需要在觸發器電路上附加放大器。

上述電路可以被簡化:R1可以用短路連接代替,這樣T2基極就直接連接到T1集電極,R2可以去掉并以開路代替。電路運行的關鍵是當T1接通(電流輸入基極的結果)時,通過RE的電流比T1截止時小,因為T1導通時會使T2截止,而當T2導通時,相比T1會為RE提供更大的通過電流。當流入RE的電流減小時,其上的電壓會降低,因此一旦電流開始流入T1,輸入電壓一定會降低以使T1回到截止狀态,這是因為此時T1的射極電壓已降低。

這一施密特觸發緩沖器也可以變成一個施密特觸發反相器,而且在此過程中還能省去一個電阻,方法是将RK2以短接代替,并将Vout連接到T2射極而不是集電極。不過在這種情況下,RE的阻值應該更大,因為此時RE要充當輸出端的下拉電阻,作用是當輸出應該為低電平時,其會降低輸出端的電壓。若RE的阻值較小,其上隻能産生一個較小的電壓,在輸出應該為數字低電平時,這一電壓實際上會提高輸出電壓。

應用

1.波形變換

可将三角波、正弦波、周期性波等變成矩形波。

2.脈沖波的整形

數字系統中,矩形脈沖在傳輸中經常發生波形畸變,出現上升沿和下降沿不理想的情況,可用施密特觸發器整形後,獲得較理想的矩形脈沖。

3.脈沖鑒幅

幅度不同、不規則的脈沖信号施加到施密特觸發器的輸入端時,能選擇幅度大于預設值的脈沖信号進行輸出。

4、構成多諧振蕩器

幅值不同的信号在通過加上一個合适電容的施密特觸發器後會産生矩形脈沖,矩形波脈沖信号,常用作脈沖信号源及時序電路中的時鐘信号。

常用芯片

74LS18雙四輸入與非門(施密特觸發)

74LS14六反相器(施密特觸發)

74132、74LS132、74S132、74F132、74HC132四2輸入與非施密特觸發器觸發器

74221、74LS221、74HC221、74C221雙單穩态多諧振蕩器(有施密特觸發器)

用555定時器可以構成施密特觸發器

CD4093由四個2輸入施密特觸發器組成

相關詞條

相關搜索

其它詞條