二極管

二極管

用半導體材料制成的電子器件
二極管是用半導體材料(矽、硒、鍺等)制成的一種電子器件   。它具有單向導電性能, 即給二極管陽極加上正向電壓時,二極管導通。 當給陽極和陰極加上反向電壓時,二極管截止。 因此,二極管的導通和截止,則相當于開關的接通與斷開   。二極管是最早誕生的半導體器件之一,其應用非常廣泛。特别是在各種電子電路中,利用二極管和電阻、電容、電感等元器件進行合理的連接,構成不同功能的電路,可以實現對交流電整流、對調制信号檢波、限幅和鉗位以及對電源電壓的穩壓等多種功能   。無論是在常見的收音機電路還是在其他的家用電器産品或工業控制電路中,都可以找到二極管的蹤迹   。[1]
  • 中文名:二極管
  • 英文名:diode
  • 别名:晶體二極管
  • 功能:整流,阻燃等

結構組成

二極管就是由一個PN結加上相應的電極引線及管殼封裝而成的。  

采用不同的摻雜工藝,通過擴散作用,将P型半導體與N型半導體制作在同一塊半導體(通常是矽或鍺)基片上,在它們的交界面就形成空間電荷區稱為PN結。  

由P區引出的電極稱為陽極,N區引出的電極稱為陰極。因為PN結的單向導電性,二極管導通時電流方向是由陽極通過管子内部流向陰極。  

二極管的電路符号如圖1所示。二極管有兩個電極,由P區引出的電極是正極,又叫陽極;由N區引出的電極是負極,又叫陰極。三角箭頭方向表示正向電流的方向,二極管的文字符号用VD表示。  

工作原理

二極管的主要原理就是利用PN結的單向導電性,在PN結上加上引線和封裝就成了一個二極管。

晶體二極管為一個由P型半導體和N型半導體形成的PN結,在其界面處兩側形成空間電荷層,并建有自建電場。當不存在外加電壓時,由于PN結兩邊載流子濃度差引起的擴散電流和自建電場引起的漂移電流相等而處于電平衡狀态。  

當外界有正向電壓偏置時,外界電場和自建電場的互相抑消作用使載流子的擴散電流增加引起了正向電流。當外界有反向電壓偏置時,外界電場和自建電場進一步加強,形成在一定反向電壓範圍内與反向偏置電壓值無關的反向飽和電流。  

當外加的反向電壓高到一定程度時,PN結空間電荷層中的電場強度達到臨界值産生載流子的倍增過程,産生大量電子空穴對,産生了數值很大的反向擊穿電流,稱為二極管的擊穿現象。PN結的反向擊穿有齊納擊穿和雪崩擊穿之分。  

PN結形成原理

P型半導體是在本征半導體(一種完全純淨的、結構完整的半導體晶體)摻入少量三價元素雜質,如硼等。

因硼原子隻有三個價電子,它與周圍的矽原子形成共價鍵,因缺少一個電子,在晶體中便産生一個空位,當相鄰共價鍵上的電子獲得能量時就有可能填補這個空位,使硼原子成了不能移動的負離子,而原來的矽原子的共價鍵則因缺少一個電子,形成了空穴,但整個半導體仍呈中性。這種P型半導體中以空穴導電為主,空穴為多數載流子,自由電子為少數載流子。  

N型半導體形成的原理和P型原理相似。在本征半導體中摻入五價原子,如磷等。摻入後,它與矽原子形成共價鍵,産生了自由電子。在N型半導體中,電子為多數載流子,空穴為少數載流子。  

因此,在本征半導體的兩個不同區域摻入三價和五價雜質元素,便形成了P型區和N型區,根據N型半導體和P型半導體的特性,可知在它們的交界處就出現了電子和空穴的濃度差異,電子和空穴都要從濃度高的區域向濃度低的區域擴散,它們的擴散使原來交界處的電中性被破壞。  

PN結單向導電性

在PN結外加正向電壓V,在這個外加電場的作用下,PN結的平衡狀态被打破,P區中的空穴和N區的電子都往PN結方向移動,空穴和PN結P區的負離子中和,電子和PN結N區的正離子中和,這樣就使PN結變窄。随着外加電場的增加,擴散運動進一步增強,漂移運動減弱。當外加電壓超過門檻電壓,PN結相當于一個阻值很小的電阻,也就是PN結導通。  

主要分類

點接觸型二極管

點接觸型二極管的PN結接觸面積小,不能通過較大的正向電流和承受較高的反向電壓,但它的高頻性能好,适宜在高頻檢波電路和開關電路中使用   。

面接觸型二極管

面接觸型二極管的PN結接觸面積大,可以通過較大的電流,也能承受較高的反向電壓,适宜在整流電路中使用   。

平面型二極管

平面型二極管在脈沖數字電路中作開關管使用時PN結面積小,用于大功率整流時PN結面積較大   。

穩壓管

穩壓管是一種特殊的面接觸型半導體矽二極管,具有穩定電壓的作用。穩壓管與普通二極管的主要區别在于,穩壓管是工作在PN結的反向擊穿狀态。通過在制造過程中的工藝措施和使用時限制反向電流的大小,能保證穩壓管在反向擊穿狀态下不會因過熱而損壞。  

穩壓管與一般二極管不一樣,它的反向擊穿是可逆的,隻要不超過穩壓管電流的允許值,PN結就不會過熱損壞,當外加反向電壓去除後,穩壓管恢複原性能,所以穩壓管具有良好的重複擊穿特性。  

光電二極管

光電二極管又稱光敏二極管。它的管殼上備有一個玻璃窗口,以便于接受光照。其特點是,當光線照射于它的PN結時,可以成對地産生自由電子和空穴,使半導體中少數載流子的濃度提高,在一定的反向偏置電壓作用下,使反向電流增加。因此它的反向電流随光照強度的增加而線性增加。  

當無光照時,光電二極管的伏安特性與普通二極管一樣。光電二極管作為光控元件可用于各種物體檢測、光電控制、自動報警等方面。當制成大面積的光電二極管時,可當作一種能源而稱為光電池。此時它不需要外加電源,能夠直接把光能變成電能。  

發光二極管

發光二極管是一種将電能直接轉換成光能的半導體固體顯示器件,簡稱LED(Light Emitting Diode)。和普通二極管相似,發光二極管也是由一個PN結構成。發光二極管的PN結封裝在透明塑料殼内,外形有方形、矩形和圓形等。發光二極管的驅動電壓低、工作電流小,具有很強的抗振動和沖擊能力、體積小、可靠性高、耗電省和壽命長等優點,廣泛用于信号指示等電路中。  

在電子技術中常用的數碼管,發光二極管的原理與光電二極管相反。當發光二極管正向偏置通過電流時會發出光來,這是由于電子與空穴直接複合時放出能量的結果。它的光譜範圍比較窄,其波長由所使用的基本材料而定。  

特性參數

用來表示二極管的性能好壞和适用範圍的技術指标,稱為二極管的參數。不同類型的二極管有不同的特性參數。  

伏安特性

二極管具有單向導電性,二極管的伏安特性曲線如圖2所示   。

在二極管加有正向電壓,當電壓值較小時,電流極小;當電壓超過0.6V時,電流開始按指數規律增大,通常稱此為二極管的開啟電壓;當電壓達到約0.7V時,二極管處于完全導通狀态,通常稱此電壓為二極管的導通電壓,用符号UD表示   。

對于鍺二極管,開啟電壓為0.2V,導通電壓UD約為0.3V。在二極管加有反向電壓,當電壓值較小時,電流極小,其電流值為反向飽和電流IS。當反向電壓超過某個值時,電流開始急劇增大,稱之為反向擊穿,稱此電壓為二極管的反向擊穿電壓,用符号UBR表示。不同型号的二極管的擊穿電壓UBR值差别很大,從幾十伏到幾千伏   。

正向特性

外加正向電壓時,在正向特性的起始部分,正向電壓很小,不足以克服PN結内電場的阻擋作用,正向電流幾乎為零,這一段稱為死區。這個不能使二極管導通的正向電壓稱為死區電壓。  

當正向電壓大于死區電壓以後,PN結内電場被克服,二極管正向導通,電流随電壓增大而迅速上升。在正常使用的電流範圍内,導通時二極管的端電壓幾乎維持不變,這個電壓稱為二極管的正向電壓。  

當二極管兩端的正向電壓超過一定數值

 ,内電場很快被削弱,特性電流迅速增長,二極管正向導通。

 叫做門坎電壓或阈值電壓,矽管約為0.5V,鍺管約為0.1V。矽二極管的正向導通壓降約為0.6~0.8V,鍺二極管的正向導通壓降約為0.2~0.3V。  

反向特性

外加反向電壓不超過一定範圍時,通過二極管的電流是少數載流子漂移運動所形成反向電流。由于反向電流很小,二極管處于截止狀态。這個反向電流又稱為反向飽和電流或漏電流,二極管的反向飽和電流受溫度影響很大。  

一般矽管的反向電流比鍺管小得多,小功率矽管的反向飽和電流在nA數量級,小功率鍺管在μA數量級。溫度升高時,半導體受熱激發,少數載流子數目增加,反向飽和電流也随之增加。  

擊穿特性

外加反向電壓超過某一數值時,反向電流會突然增大,這種現象稱為電擊穿。引起電擊穿的臨界電壓稱為二極管反向擊穿電壓。電擊穿時二極管失去單向導電性。如果二極管沒有因電擊穿而引起過熱,則單向導電性不一定會被永久破壞,在撤除外加電壓後,其性能仍可恢複,否則二極管就損壞了。因而使用時應避免二極管外加的反向電壓過高。  

反向擊穿按機理分為齊納擊穿和雪崩擊穿兩種情況。在高摻雜濃度的情況下,因勢壘區寬度很小,反向電壓較大時,破壞了勢壘區内共價鍵結構,使價電子脫離共價鍵束縛,産生電子-空穴對,緻使電流急劇增大,這種擊穿稱為齊納擊穿。如果摻雜濃度較低,勢壘區寬度較寬,不容易産生齊納擊穿。  

另一種擊穿為雪崩擊穿。當反向電壓增加到較大數值時,外加電場使電子漂移速度加快,從而與共價鍵中的價電子相碰撞,把價電子撞出共價鍵,産生新的電子-空穴對。新産生的電子-空穴被電場加速後又撞出其它價電子,載流子雪崩式地增加,緻使電流急劇增加,這種擊穿稱為雪崩擊穿。無論哪種擊穿,若對其電流不加限制,都可能造成PN結永久性損壞。  

反向電流

反向電流是指二極管在常溫(25℃)和最高反向電壓作用下,流過二極管的反向電流。反向電流越小,管子的單方向導電性能越好。值得注意的是反向電流與溫度有着密切的關系,大約溫度每升高10℃,反向電流增大一倍。例如2AP1型鍺二極管,在25℃時反向電流若為250μA,溫度升高到35℃,反向電流将上升到500μA,依此類推,在75℃時,它的反向電流已達8mA,不僅失去了單方向導電特性,還會使管子過熱而損壞。又如,2CP10型矽二極管,25℃時反向電流僅為5μA,溫度升高到75℃時,反向電流也不過160μA。故矽二極管比鍺二極管在高溫下具有較好的穩定性。  

動态電阻

二極管特性曲線靜态工作點附近電壓的變化與相應電流的變化量之比。  

電壓溫度系數

電壓溫度系數指溫度每升高一攝氏度時的穩定電壓的相對變化量。  

最高工作頻率

最高工作頻率是二極管工作的上限頻率。因二極管與PN結一樣,其結電容由勢壘電容組成。所以最高工作頻率的值主要取決于PN結結電容的大小。若是超過此值。則單向導電性将受影響。  

最大整流電流

最大整流電流是指二極管長期連續工作時,允許通過的最大正向平均電流值,其值與PN結面積及外部散熱條件等有關。因為電流通過管子時會使管芯發熱,溫度上升,溫度超過容許限度(矽管為141℃左右,鍺管為90℃左右)時,就會使管芯過熱而損壞。所以在規定散熱條件下,二極管使用中不要超過二極管最大整流電流值。  

最高反向工作電壓

加在二極管兩端的反向電壓高到一定值時,會将管子擊穿,失去單向導電能力。為了保證使用安全,規定了最高反向工作電壓值。  

檢測方法

小功率晶體二極管

1. 判别正、負電極

(1)觀察外殼上的符号标記。通常在二極管的外殼上标有二極管的符号,帶有三角形箭頭的一端為正極,另一端是負極。  

(2)觀察外殼上的色點。在點接觸二極管的外殼上,通常标有極性色點(白色或紅色)。一般标有色點的一端即為正極。還有的二極管上标有色環,帶色環的一端則為負極。  

(3)以阻值較小的一次測量為準,黑表筆所接的一端為正極,紅表筆所接的一端則為負極。(d)觀察二極管外殼,帶有銀色帶一端為負極。  

2. 檢測最高反向擊穿電壓。對于交流電來說,因為不斷變化,因此最高反向工作電壓也就是二極管承受的交流峰值電壓。  

雙向觸發二極管

将萬用表置于相應的直流電壓擋,測試電壓由兆歐表提供。  

測試時,搖動兆歐表,萬同樣的方法測出VBR值。最後将VBO與VBR進行比較,兩者的絕對值之差越小,說明被測雙向觸發二極管的對稱性越好。  

瞬态電壓抑制二極管

用萬用表測量管子的好壞對于單要極型的TVS,按照測量普通二極管的方法,可測出其正、反向電阻,一般正向電阻為4kΩ左右,反向電阻為無窮大。  

對于雙向極型的瞬态電壓抑制二極管,任意調換紅、黑表筆測量其兩引腳間的電阻值均應為無窮大,否則,說明管子性能不良或已經損壞。  

高頻變阻二極管

識别正、負極高頻變阻二極管與普通二極管在外觀上的區别是其色标顔色不同,普通二極管的色标顔色一般為黑色,而高頻變阻二極管的色标顔色則為淺色。其極性規律與普通二極管相似,即帶綠色環的一端為負極,不帶綠色環一端為正極。  

變容二極管

将萬用表紅、黑表筆怎樣對調測量,變容二極管的兩引腳間的電阻值均應為無窮大。如果在測量中,發現萬用表指針向右有輕微擺動或阻值為零,說明被測變容二極管有漏電故障或已經擊穿壞。  

單色發光二極管

在萬用表外部附接一節能1.5V幹電池,将萬用表置R×10或R×100擋。這種接法就相當于給予萬用表串接上了1.5V的電壓,使檢測電壓增加至3V(發光二極管的開啟電壓為2V)。檢測時,用萬用表兩表筆輪換接觸發光二極管的兩管腳。若管子性能良好,必定有一次能正常發光,此時,黑表筆所接的為正極紅表筆所接的為負極。  

紅外發光二極管

1. 判别紅外發光二極管的正、負電極。紅外發光二極管有兩個引腳,通常長引腳為正極,短引腳為負極。因紅外發光二極管呈透明狀,所以管殼内的電極清晰可見,内部電極較寬較大的一個為負極,而較窄且小的一個為正極。  

2. 先測量紅個發光二極管的正、反向電阻,通常正向電阻應在30k左右,反向電阻要在500k以上,這樣的管子才可正常使用。  

紅外接收二極管

1. 識别管腳極性

(1)從外觀上識别。常見的紅外接收二極管外觀顔色呈黑色。識别引腳時,面對受光窗口,從左至右,分别為正極和負極。另外在紅外接收二極管的管體頂端有一個小斜切平面,通常帶有此斜切平面一端的引腳為負極,另一端為正極。  

(2)先用萬用表判别普通二極管正、負電極的方法進行檢查,即交換紅、黑表筆兩次測量管子兩引腳間的電阻值,正常時,所得阻值應為一大一小。以阻值較小的一次為準,紅表筆所接的管腳步為負極,黑表筆所接的管腳為正極。  

2. 檢測性能好壞。用萬用表電阻擋測量紅外接收二極管正、反向電阻,根據正、反向電阻值的大小,即可初步判定紅外接收二極管的好壞。  

激光二極管

按照檢測普通二極管正、反向電阻的方法,即可将激光二極管的管腳排列順序确定。但檢測時要注意,由于激光二極管的正向壓降比普通二極管要大,所以檢測正向電阻時,萬用表指針公略微向右偏轉而已。  

主要應用

電子電路應用

幾乎在所有的電子電路中,都要用到半導體二極管。半導體二極管在電路中的使用能夠起到保護電路,延長電路壽命等作用。半導體二極管的發展,使得集成電路更加優化,在各個領域都起到了積極的作用。二極管在集成電路中的作用很多,維持着集成電路正常工作。下面簡要介紹二極管在以下四種電路中的作用。  

(1)開關電路

在數字、集成電路中利用二極管的單向導電性實現電路的導通或斷開,這一技術已經得到廣泛應用。開關二極管可以很好的保護的電路,防止電路因為短路等問題而被燒壞,也可實現傳統開關的功能。開關二極管還有一個特性就是開關的速度很快。這是傳統開關所無法比拟的。  

(2)限幅電路

在電子電路中,常用限幅電路對各種信号進行處理。它是用來讓信号在預置的電平範圍内,有選擇地傳輸一部分信号。大多數二極管都可作為限幅使用,但有些時候需要用到專用限幅二極管,如保護儀表時。  

(3)穩壓電路

在穩壓電路中通常需要使用齊納二極管,它是一種利用特殊工藝制造的面結型矽把半導體二極管,這種特殊二極管雜質濃度比較高,空間電荷區内的電荷密度大,容易形成強電場。當齊納二極管兩端反向電壓加到某一值,反向電流急增,産生反向擊穿。  

(4)變容電路

在變容電路中常用變容二極管來實現電路的自動頻率控制、調諧、調頻以及掃描振蕩等。  

工業産品應用

經過多年來科學家們不懈努力,半導體二極管發光的應用已逐步得到推廣,發光二極管廣泛應用于各種電子産品的指示燈、光纖通信用光源、各種儀表的指示器以及照明。發光二極管的很多特性是普通發光器件所無法比拟的,主要具有特點有:安全、高效率、環保、壽命長、響應快、體積小、結構牢固。因此,發光二極管是一種符合綠色照明要求的光源。  

發光二極管在很多領域得到普遍應用,下面介紹幾點其主要應用:

(1)電子用品中的應用

發光二極管在電子用品中一般用作屏背光源或作顯示、照明應用。從大型的液晶電視、電腦顯示屏到媒體播放器MP3、MP4以及手機等的顯示屏都将發光二極管用作屏背光源。  

(2)汽車以及大型機械中的應用

發光二極管在汽車以及大型機械中得到廣泛應用。汽車以及大型機械設備中的方向燈、車内照明、機械設備儀表照明、大前燈、轉向燈、刹車燈、尾燈等都運用了發光二極管。主要是因為發光二極管的響應快、使用壽命長(一般發光二極管的壽命比汽車以及大型機械壽命長)。  

(3)煤礦中的應用

由于發光二極管較普通發光器件具有效率高、能耗小、壽命長、光度強等特點,因此礦工燈以及井下照明等設備使用了發光二極管。雖然還未完全普及,但在不久将得到普遍應用,發光二極管将在煤礦應用中取代普通發光器件。  

(4)城市的裝飾燈

在當今繁華的商業時代,霓虹燈是城市繁華的重要标志,但霓虹燈存在很多缺點,比如壽命不夠長等。因此,用發光二極管替代霓虹燈有着很多優勢,因為發光二極管與霓虹燈相比除了壽命長,還有節能、驅動和控制簡易、無需維護等特點。發光二極管替代霓虹燈将是照明設備發展的必然結果。  

相關詞條

相關搜索

其它詞條