電流傳感器

電流傳感器

電子産品
小小的電源設備已經融合了越來越多的新技術。例如開關電源、硬開關、軟開關、參數穩壓、線性反饋穩壓、磁放大器技術、數控調壓、PWM、SPWM、電磁兼容等等。實際需求直接推動電源技術不斷發展和進步,為了自動檢測和顯示電流,并在過流、過壓等危害情況發生時具有自動保護功能和更高級的智能控制,具有傳感檢測、傳感采樣、傳感保護的電源技術漸成趨勢,檢測電流或電壓的傳感器便應運而生并在我國開始受到廣大電源設計者的青睐。
    中文名:電流傳感器 外文名:current sensor 所屬品牌: 産品類型:檢測裝置 類型:檢測裝置 租用:感受到被測電流的信息 功能:變換成為符合标準的電信号 應用:開關電源、硬開關、軟開關、 原理:霍爾磁平衡原理 電流參數:LF-AI12-32A1-0.5/0~5A

定義

電流傳感器,是一種檢測裝置,能感受到被測電流的信息,并能将檢測感受到的信息,按一定規律變換成為符合一定标準需要的電信号或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。電流傳感器也稱磁傳感器,可以在家用電器、智能電網、電動車、風力發電等等。在我們生活中都用到很多磁傳感器,比如說電腦硬盤、指南針,家用電器等等。

分類

電流傳感器依據測量原理不同,主要可分為:分流器、電磁式電流互感器、電子式電流互感器等。

電子式電流互感器包括霍爾電流傳感器、羅柯夫斯基電流傳感器及專用于變頻電量測量的AnyWay變頻功率傳感器(可用于電壓、電流和功率測量)等。

與電磁式電流傳感器相比較,電子式電流互感器沒有鐵磁飽和,傳輸頻帶寬,二次負荷容量小、尺寸小、重量輕、是今後電流傳感器的發展方向。

光纖電流傳感器是以法拉第磁光效應為基礎、以光纖為介質的新型電流傳感器。

當線偏振光在介質中傳播時,若在平行于光的傳播方向上加一強磁場,則光振動方向将發生偏轉,偏轉角度ψ與磁感應強度B和光穿越介質的長度l的乘積成正比,即ψ=V*B*l,比例系數V稱為費爾德常數,與介質性質及光波頻率有關。偏轉方向取決于介質性質和磁場方向。上述現象稱為法拉第效應。1845年由M.法拉第發現。

霍爾傳感器

概述

AIC是“特制集成電路”的英文縮寫,它是八十年代末迅速發展起來的一項高技術産品。從設計思想、研制手段,直到測試方法,使與傳統的通用集成電路有質的區别,是将超大規模集成電路(VLSI)的工藝技術、計算機輔助設計(CAD)、自動測試技術(ATE)三者結合的豐碩成果。應用在變送器上,即為變送器專用厚膜電路。ASIC電路的變送器把變送器的轉換電路和輸出電路(即大部分電子電路)全部集成到一塊定制的芯片上,大大減少了元器件的數量,整個變送器僅有CT、PT、電源、大電容、ASIC芯片等少數幾個器件,從而可大大提高整個變送器的可靠性和長期穩定性。

工作原理

霍爾原理電流傳感器是基于霍爾磁平衡原理(閉環)和霍爾直測式(開環)兩種基本原理。開環電流傳感器的原理:原邊電流IP産生的磁通被高品質磁芯聚集在磁路中,霍爾元件固定在很小的氣隙中,對磁通進行線性檢測,霍爾器件輸出的霍爾電壓經過特殊電路處理後,副邊輸出與原邊波形一緻的跟随輸出電壓,此電壓能夠精确反映原邊電流的變化。

霍爾電流傳感器可以測量各種類型的電流,從直流電到幾十千赫茲的交流電,其所依據的工作原理主要是霍爾效應,如圖1所示。當原邊導線經過電流傳感器時,①原邊電流IP會産生磁力線,②原邊磁力線集中在磁芯周圍,③内置在磁芯氣隙中的霍爾電極可産生和原邊磁力線成正比的大小僅幾毫伏的電壓,④電子電路可把這個微小的信号轉變成副邊電流IS,⑤并存在以下關系式:

(1)

其中,IS—副邊電流;

IP—原邊電流;

NP—原邊線圈匝數;

NS—副邊線圈匝數;

NP/NS—匝數比,一般取NP=1。

電流傳感器的輸出信号是副邊電流IS,它與輸入信号(原邊電流IP)成正比,IS一般很小,隻有100~400mA。如果

輸出電流經過測量電阻RM,則可以得到一個與原邊電流成正比的大小為幾伏的輸出電壓信号。

特性參數

标準額定值IPN和額定輸出電流ISN

IPN指電流傳感器所能測試的标準額定值,用有效值表示(A.r.m.s),IPN的大小與傳感器産品的型号有關。

ISN指電流傳感器額定輸出電流,一般為100~400mA,某些型号可能會有所不同。

傳感器供電電壓VA

VA指電流傳感器的供電電壓,它必須在傳感器所規定的範圍内。超過此範圍,傳感器不能正常工作或可靠性降低,另外,傳感器的供電電壓VA又分為正極供電電壓VA+和負極供電電壓VA-。

測量範圍Ipmax。測量範圍指電流傳感器可測量的最大電流值,測量範圍一般高于标準額定值IPN。測量範圍可用下式計算:

(2)要注意單相供電的傳感器,其供電電壓VAmin是雙相供電電壓VAmin的2倍,所以其測量範圍要高于雙相供電的傳感器。

過載

電流傳感器的過載能力參見圖2。發生電流過載時,在測量範圍之外,原邊電流仍會增加,而且過載電流的持續時間可能很短,而過載值有可能超過傳感器的允許值,過載電流值傳感器一般測量不出來,但不會對傳感器造成損壞。

精度

霍爾效應傳感器的精度取決于标準額定電流IPN。在+25℃時,傳感器測量精度受原邊電流影響的曲線如圖3所示,使用下面公式可計算出精度:

(3)

其中,K=NS/NP。

計算精度時必須考慮偏移電流、線性度、溫度漂移的影響。

偏移電流ISO

偏移電流也叫殘餘電流或剩餘電流,它主要是由霍爾元件或電子電路中運算放大器工作狀态不穩造成的。電流傳感器在生産時,在25℃,IP=0時的情況下,偏移電流已調至最小,但傳感器在離開生産線時,都會産生一定大小的偏移電流。産品技術文檔中提到的精度已考慮了偏移電流增加的影響。

線性度

參見圖4,線性度決定了傳感器輸出信号(副邊電流IS)與輸入信号(原邊電流IP)在測量範圍内成正比

的程度,ABB公司的電流傳感器線性度要優于0.1%。

溫度漂移

偏移電流ISO是在25℃時計算出來的,當霍爾電極周邊環境溫度變化時,ISO會産生變化。因此,考慮偏移電流ISO的最大變化是很重要的,這可以通過下式計算:

其中,CV(Catalogue value)是指電流傳感器性能表中的溫度漂移值,例如:對CS2000BR型來說,CV為0.5×10-4/℃,最大溫度Tmax為-40℃,額定輸出電流為400mA,則偏移電流的最大變化為:Ma

安裝方法

霍爾電流傳感器産品說明一般由“傳感器産品型号”和“生産日期”兩部分構成。“傳感器産品型号”用于标明傳感器的型号、額定測量值、标準型或非标準型。“傳感器生産日期”則是由8位數字構成,表明傳感器的生産年份、日期(一年中的第幾日)及傳感器序列号。

霍爾電流傳感器産品很多,每種傳感器的外形結構、尺寸大小等都有所不同,下面介紹幾種典型的外形結構及安裝接線方法。

MP25P1型

MP25P1電流傳感器是ABB公司中一種量程很小的傳感器,所能測量的額定電流為5、6、8、12、25A,原邊管腳的不同接法可确定額定測量電流為多少,參見圖5。

ES300C型

如MP25P1一樣,一般傳感器都有正極(+)、負極(-)、測量端(M)三個管腳,但ES300C則沒有此三個管腳,而是有紅、黑、綠三根引線,分别對應于正極、負極及測量端。同時在ES300C型傳感器中有一内孔,測量原邊電流時要将導線穿過該内孔。

不管是MP25P1還是ES300C型等電流傳感器,安裝時管腳的接線應根據測量情況進行相應連線。

(1)在測量交流電時,必須強制使用雙極性供電電源。即傳感器的正極(+)接供電電源“+VA”端,負極接電源的“-VA”端,這種接法叫雙極性供電電源。同時測量端(M)通過電阻接電源“0V”端。

(2)在測量直流電流時,可使用單極性或單相供電電源,即将正極或負極與“0V”端短接,從而形成隻有一個電極相接的情況,其接法共有四種(見圖6和圖7)。

在傳感器産品中,标有“-N”标志的表示該傳感器沒有電源意外倒置防護措施;标有“-P”标志的則表示該傳感器具有防護措施。圖6是無保護二極管時的單極性供電電源安裝接線方法,圖7是加有保護措施的傳感器的接法。

(3)具有屏蔽作用的傳感器的連接方法

ABB公司的部分電流傳感器具有電磁屏蔽作用,其産品外殼上會多一個“E”标志的端口,其連接方式有兩種:将屏蔽端和負極(-VA)或零線(0V)相連,如圖8所示。

另外,安裝時必須全面考慮産品的用途、型号、量程範圍、安裝環境等。比如傳感器應盡量安裝在利于散熱的場合;如果環境隻适于垂直安裝,則必須選擇帶“V”字标志的傳感器(如CS300 BRV)。

測量方法

除了安裝接線、即時标定校準、注意傳感器的工作環境外,通過下述方法還可以提高測量精度:

1、原邊導線應放置于傳感器内孔中心,盡可能不要放偏;

2、原邊導線盡可能完全放滿傳感器内孔,不要留有空隙;

3、需要測量的電流應接近于傳感器的标準額定值IPN,不要相差太大。如條件所限,手頭僅有一個額定值很高的傳感器,而欲測量的電流值又低于額定值很多,為了提高測量精度,可以把原邊導線多繞幾圈,使之接近額定值。例如當用額定值100A的傳感器去測量10A的電流時,為提高精度可将原邊導線在傳感器的内孔中心繞九圈(一般情況,NP=1;在内孔中繞一圈,NP=2;……;繞九圈,NP=10,則NP×10A=100A與傳感器的額定值相等,從而可提高精度);

4、當欲測量的電流值為IPN/5的時,在25℃仍然可以有較高的精度。

抗幹擾性

1、電磁場

閉環霍爾效應電流傳感器,利用了原邊導線的電磁場原理。因此下列因素直接影響傳感器是否受外部電磁場幹擾。

(1)傳感器附近的外部電流大小及電流頻率是否變化;

(2)外部導線與傳感器的距離、外部導線的形狀、位置和傳感器内霍爾電極的位置;

(3)安裝傳感器所使用的材料有無磁性;

(4)所使用的電流傳感器是否屏蔽;

為了盡量減小外部電磁場的幹擾,最好按安裝指南安裝傳感器。

2、電磁兼容性

電磁兼容性EMC,(Electro -Magnetic Compatibility )是研究電氣及電子設備在

共同的電磁環境中能執行各自功能的共存狀态,即要求在同一電磁環境中的上述各種設備都能正常工作而又互不幹擾,達到“兼容”狀态的一門學科。空間電磁環境的惡化越來越容易使電子元器件之間因互不兼容而引發系統的誤動作,因此電工、電子設備電磁兼容性檢測極有必要。由于實際生産、科研及市場推廣的迫切需要,采用已通過電磁兼容性檢測的電流和電壓傳感器已形成共識,并已成為一個強制性标準。ABB公司的所有電流傳感器自1996年1月1日起,均已通過了EMC檢測。

傳感器标定

1、偏移電流ISO

偏移電流必須在IP=0、環境溫度T≈25℃的條件下進行校準,按圖9方法(雙極性供電)接線,且測量電壓VM必須滿足:

VM≦RM×ISO(5)

2、精度

在IP=IPN(AC or DC)、環境溫度T≈25℃、傳感器雙極性供電、RM為實際測量電阻的條件下進行測量,其接線如圖10所示,并用公式(3)計算精度。

3、保護性測試

霍爾電流傳感器在測量電路短路、測量電路開路、供電電源開路、原邊電流過載、電源意外倒置的條件下都可受到保護。對上述各項測試舉例如下:

(1)測量電路短路

此項測試必須在IP=IPN、環境溫度T≈25℃、傳感器雙向供電、RM為實際應用中的電阻條件下進行,連接圖如圖11所示,開關S應在一分鐘之内合上和打開。

(2)測量電路開路

此項測試條件為IP=IPN、環境溫度T≈25℃、傳感器雙向供電、RM是實際應用中的電阻。測試圖如圖12,開關S應在一分鐘之内完成閉合/打開切換動作。

(3)電源意外倒置測試

為防止電源意外倒置而使傳感器損壞,在電路中專門加裝了保護二極管,此項測試可使用萬用表測試二極管兩端,測試應在IP=0、環境溫度T≈25℃、傳感器不供電、不連接測量電阻的條件下進行。可使用以下兩種方法測試:

第一種:萬用表紅表筆端接傳感器“M”端,萬用表黑表筆端接傳感器“+”端;

第二種:萬用表紅表筆接傳感器負極,萬用表黑表筆接傳感器M端;

在測試中,如萬用表鳴笛,說明二極管已損壞。

八、傳感器應用計算

根據圖13,電流傳感器的主要計算公式如下:

NPIP=NSIS;計算原邊或副邊電流

VM=RMI;計算測量電壓

VS=RSIS;計算副邊電壓

VA=e+VS+VM;計算供電電壓

其中,e是二極管内部和晶體管輸出的壓降,不同型号的傳感器有不同的e值。這裡我們僅以ES300C為例,這種傳感器的匝數比NP/NS=1/2000、标準額定電流值IPN=300A rms 、供電電壓VA的範圍為±12V~±20V(±5%)、副邊電阻RS=30Ω,在雙極性(±VA)供電,其傳感器測量量程>100A且無防止供電電源意

外倒置的保護二極管的情況下,e=1V。在上述條件下:

(1)給定供電電壓VA,計算測量電壓VM和測量電阻RM:

假設:供電電壓VA=±15V

根據上述公式得:

測量電壓VM=9.5V;

測量電阻RM=VM/IS=63.33Ω;

副邊電流IS=0.15A。

所以當我們選用63.33Ω的測量電阻時,在傳感器滿額度測量時,其輸出電流信号為0.15A,測量電壓為9.5V。

(2)給定供電電壓和測量電阻,計算欲測量的峰值電流;

假設:供電電壓VA=±15V,測量電阻RM=12Ω,

則:VM+VS=(RM+RS)×IS=VA-e=14V

而:RM+RS=12W+30W=42W,

則最大輸出副邊電流:A

原邊峰值電流:IPmax=ISmax(NS/NP)=666A

這說明,在上述條件下,傳感器所能測量的最大電流即原邊峰值電流為666A。如果原邊電流大于此值,傳感器雖測量不出來,但傳感器不會被損壞。

(3)測量電阻(負載電阻)能影響傳感器的測量範圍。

測量電阻對傳感器測量範圍也存在影響,所以我們需要精心選擇測量電阻。用下式可計算出測量電阻:

其中,VAmin—扣除誤差後的最小供電電壓;

e—傳感器内部晶體管的電壓降;

RS—傳感器副邊線圈的電阻;

ISmax—原邊電流IP為最大值時的副邊電流值。

另外我們可以通過下式确認所選傳感器的穩定性。

如果VAmin不符合上式,則會造成傳感器的不穩定。一旦出現這種情況,我們可以有以下三種方法克服:

1)更換電壓更大的供電電源;

2)減小測量電阻的值;

3)将傳感器更換成RS較小的傳感器。

例如,某種型号的電流傳感器,其标準額定電流IPN=1000A,匝數比NP/NS=1/2000,e值為1.5V,副邊電阻RS=30Ω,測量電阻RM=15W,用15V電源單極性供電。則VA=30V(單極性供電是雙極性供電的2倍),而:

IS=IP×NP/NS=0.5A

VS=RS×IS=15V

VM=RM×IS=7.5V

通過

以上檢驗,可知這種傳感器在此條件下測量能保證穩定性。它所能測量的原邊電流的最大值(即測量範圍)傳感器是能夠受規定的被測量并按照一定的規律轉換成可用輸出信号的器件或裝置的總稱,通常由敏感元件和轉換元件組成。當傳感器的輸出為規定的标準信号時,則稱為變送器。

變送器的概念是将非标準電信号轉換為标準電信号的儀器,傳感器則是将物理信号轉換為電信号的器件,過去常講物理信号,随之其他信号也将出現。一次儀表指現場測量儀表或基地控制表,二次儀表指利用一次表信号完成其他功能:諸如控制,顯示等功能的儀表。

性能指标

*執行标準:IEC688:1992,

*精度等級:≤1.0%.F.S

*線性度:優于0.2%

*響應時間:≤10Us

*頻率特性:0~10KHz

*失調電壓:≤20mV

*溫度特性:≤150PPM/℃(0~50℃)

*整機功耗:≤30mA

*隔離耐壓:輸入/輸出/外殼間 AC2.0KV/min*1mA

*過載能力:2倍電流連續,30倍1秒

*阻燃特性:UL94-V0

*工作環境:-10℃~50℃,20%~90%無凝露

注意事項

*注意産品标簽上的輔助電源信息,變送器的輔助電源等級和極性不可接錯,否則将損壞變送器;

*電流方向與産品外殼上所标的箭頭同向時,才能獲得正向輸出;

*原邊母線的溫度不應超過60℃,電流母線填滿原邊穿線孔時,獲得最佳測量精度;

*本系列變送器内部未設置防雷擊電路,當變送器輸入、輸出饋線暴露于室外惡劣氣候環境之中時,應注意采取防雷措施;

*變送器為一體化結構,不可拆卸,同時應避免碰撞和跌落;

*請勿損壞或者修改産品的标簽、标志,請勿拆卸或改裝變送器,否則公司将不再對該産品提供“三包”(包換、包退、包修)服務。

新型産品

霍爾電壓、電流傳感器主要用于工業控制和獨立的電壓、電流測量,因此,一般都不标稱與功率測量準确度密切相關的角差指标,因此,不适用于高精度的功率測量。

随着變頻技術和節能技術的發展,有必要對各類變頻調速裝置的能效進行準确的評測,而電磁式電壓、電流互感器一般隻能準确測量工頻正弦電路的功率。新型的變頻功率傳感器,是一種電壓、電流組合式傳感器,該類傳感器直接輸出數字量,并采用光纖進行傳輸,可以有效避免傳輸環節的損耗和幹擾。并且在較寬的頻率範圍内具有較小的比差和角差,可以準确測量各類變頻電量(電壓、電流、功率和諧波等)。廣泛應用于等的産品檢驗和能效評測。

英國出現了一種适合于安裝在240伏-600安變電站主線上的電流傳感器,這種傳感器對變電站的電力輸出進行監控,可以減少地方電網故障所造成的停電時間。電流傳感器可以對供電電纜進行電流監控,若是電纜出線超負荷,這些電流傳感器可将一部分負荷轉移到其他相中,或者是新鋪設的電纜中,保護電纜的安全使用和運行。

随着智能電網的不斷發展和升級,電流傳感器也在技術、設計和效用等方面不斷進行改進和完善,對冶金、化工等行業的電流測流具有重大作用。

基于智能電網的光纖電流傳感器

新型光纖電流傳感器就是智能電網快速發展的科技産物。我國推出了XDGDL-1光纖電流傳感系統,實現了管線電流傳感系統的全數字閉環控制,具有穩定性和線性度好、靈敏度高等特點,滿足了大量程範圍的高精度測量要求。

同時,該系統開發了一種可現場繞制的伸縮結構,安裝方便,可避免雜散磁場的幹擾,母線偏心的測量誤差小于正負0.1%,實現了一種高精度信号轉換方案,為整流器控制設備提供高精度模拟信号和标準數字通信接口。

基于TMR(隧道磁電阻)效應的電流傳感器:

TMR磁感應技術在2004年首次工業應用于電腦硬盤領域,使硬盤的存儲密度有了質的飛躍,單碟TB級的存儲硬盤進入民用市場。經過近10年的發展,TMR技術依然煥發勃勃生機。TMR磁感應效應和Hall技術類似,算是第四代磁感應技術。靈敏度,分辨率,功耗,溫度特性都有10倍以上的提升。全芯片級制程控制提供可靠的品質和合理的價格。現在國内有些廠家開始推出TMR技術的電流傳感器。基于TMR芯片制造的電流傳感可以在高靈敏度,溫度穩定性,抗幹擾性,小型化、集成化、智能化和低功耗方面有着出色的表現。

工業升級發展促進電流傳感器改進

在我國工業發展升級的驅動下,電力設備的安全性使用越來越受到重視。電流傳感器作為一個兼具保護性和監控作用的工具,将會在未來的電網中起到更重要的意義。相比國外同類産品,國内的電流傳感器技術還有很大的差距需要彌補和提高。

國内也逐漸湧現出有很多新型産業,都需要傳感器的支持,無論是出于安全性考慮還是市場效益考慮,電流傳感器将會趨于更加高效可靠,在低碳環保的要求下,小型化也是未來的一大趨勢,這也将促進國内傳感器廠商投入更多的經曆開發新技術和産品。在不久的将來,電流傳感器将會在更多行業得到廣泛應用,同時将為新興物聯網打好基礎。

甯波2015年3月30日電 /美通社/ -- 日前,業内領先的MEMS設計公司、電流傳感器廠商,希磁科技有限公司(以下簡稱“希磁科技”)發布了STK-HD系列電流傳感器,一種低成本、小體積、高精度的電流檢測解決方案。

應用領域

電流傳感器應用于風力發電:風能作為一種清潔的可再生能源,越來越受到世界各國的重視。其蘊量巨大,全球的風能約為2.74×109GW,其中可利用的風能為2×107GW,比地球上可開發利用的水能總量還要大10倍。風很早就被人們利用--主要是通過風車來抽水、磨面等,而新世紀,人們感興趣的是如何利用風來發電,以及如何才能發電量最大化。電流傳感器作為主要的檢測元件,在其中起到至關重要的作用。

未來趨勢

電流傳感器未來的發展趨勢有以下幾種特點:

1、高靈敏度。被檢測信号的強度越來越弱,這就需要磁性傳感器靈敏度得到極大提高。應用方面包括電流傳感器、角度傳感器、齒輪傳感器、太空環境測量。

2、溫度穩定性。更多的應用領域要求傳感器的工作環境越來越嚴酷,這就要求磁傳感器必須具有很好的溫度穩定性,行業應用包括汽車電子行業。

3、抗幹擾性。很多領域裡傳感器的使用環境沒有任何評比,就要求傳感器本身具有很好的抗幹擾性。包括汽車電子、水表等等。

4、小型化、集成化、智能。要想做到以上需求,這就需要芯片級的集成,模塊級集成,産品級集成。5、高頻特性。随着應用領域的推廣,要求傳感器的工作頻率越來越高,應用領域包括水表、汽車電子行業、信息記錄行業。

6、低功耗。很多領域要求傳感器本身的功耗極低,得以延長傳感器的使用壽命。應用在植入身體内磁性生物芯片,指南針等等。

相關詞條

相關搜索

其它詞條