紅外線測溫儀

紅外線測溫儀

用紅外線測量溫度的儀器
紅外測溫技術在生産過程中,在産品質量控制和監測,設備在線故障診斷和安全保護以及節約能源等方面發揮了着重要作用。近20年來,非接觸紅外人體測溫儀在技術上得到迅速發展,性能不斷完善,功能不斷增強,品種不斷增多,适用範圍也不斷擴大。比起接觸式測溫方法,紅外測溫有着響應時間快、非接觸、使用安全及使用壽命長等優點。非接觸紅外測溫儀包括便攜式、在線式和掃描式三大系列,并備有各種選件和計算機軟件,每一系列中又有各種型号及規格。在不同規格的各種型号測溫儀中,正确選擇紅外測溫儀型号對使用者來說是十分重要的。
    中文名:紅外線測溫儀 外文名: 用途: 英文名:Infrared Thermometer 開放分類:成像儀溫度計

應用

AIKOM公司的超小型溫度校正儀,最大限度地克服了由于超小型化而帶來的技術困難,使用戶可以攜帶到工業現場的每一角落,對其需要檢查、維修和标定的溫度探頭實施現場校驗作業,免除将其拆卸取回實驗室進行對比标定,又要重新裝回原系統的麻煩,可以大大提高工作效率,節約時間,提高設備和系統的可用率,并且為現場自動控制工程師提供了優異的維修、校驗手段。

AIKOM系列超小型溫度校正儀,一改傳統的溫度校驗模式,其應用領域之廣泛,遍及工業領域溫度測量和标定的每一環節,并提供了一個可調的模拟溫度源,對提高工藝流程控制水平、産品質量保證以及防止工業過程自動保護定值的誤動和尋找故障提供了重要的檢查手段。特别是對于溫度開關的定值檢查,可以做到快速準确而方便,其應用領域涉及:

電力:燃煤發電廠、燃氣供熱電廠、水電站、核電站、地區供熱管網、大型電力變壓器的溫度保護和信号傳送等。

冶金:鋁廠、銅廠、鋼廠等。

石化:采油、輸油管路、石化廠、煉油廠。

一般工業:冷凍機廠、空調廠、冰箱廠、啤酒廠、制藥廠、汽車廠。

溫度元件制造廠:鉑電阻、熱電偶及補償導線電纜、溫度開關、溫度傳感器制造廠。

交通運輸:機場的飛機維修、大型運輸動力系統維修、遠洋海運作為在役維修測量手段。

Aikom産品在中國市場推出的主要有二個系列(PD——1000/PD——2000)四種型号。PD——1025特點是采用半導體制冷技術,在攝氏20度環境溫度下最低溫度可以達到——25度,高溫能達到105度。PD——2300的特點是槽體有效尺寸深,加熱元件使用24V直流,安全性好和靜電影響小,利用機内風扇冷卻而不需要外壓縮空氣,采用錐形槽體和傳熱套管,熱阻極小傳熱快,溫場經過特殊補償,溫度範圍為環境溫度至攝氏400度。

PD——2800的特點是可以提供攝氏720度的高溫源,升降溫速度快,使用方便,操作簡單,經濟實用,特别适用于工業現場使用。但由于采肒型熱電偶作為槽體測溫元件,适用于高溫而精度要求不高。場稀BR>PD——2600是Aikom公司最新推出的高精度,高穩定性,高溫槽體,标定後的精度為正負0.3℃滿量程非線性誤差。它還可以通過選購一個軟件,用以實現十段可編程升降溫速率控制,用來模拟和實現工業現場實際工藝流程。也可以輸入1—5V過程電壓信号,用以改變槽體控溫單元的設定值構成環路控制。總之,它是一台功能強大的計算機程控小型便攜式恒溫槽,是世界上同類産品中性能優異的代表作。

采用紅外成像檢測技術可以對正在運行的設備進行非接觸檢測,拍攝其溫度場的分布、測量任何部位的溫度值,據此對各種外部及内部故障進行診斷,具有實時、遙測、直觀和定量測溫等優點,用來檢測發電廠、變電所和輸電線路的運轉設備和帶電設備非常方便、有效。

利用熱像儀檢測在線電氣設備的方法是紅外溫度記錄法。紅外溫度記錄法是工業上用來無損探測,檢測設備性能和掌握其運行狀态的一項新技術。與傳統的測溫方式(如熱電偶、不同熔點的蠟片等放置在被測物表面或體内)相比,熱像儀可在一定距離内實時、定量、在線檢測發熱點的溫度,通過掃描,還可以繪出設備在運行中的溫度梯度熱像圖,而且靈敏度高,不受電磁場幹擾,便于現場使用。它可以在-20℃—2000℃的寬量程内以0.05℃的高分辨率檢測電氣設備的熱緻故障,揭示出如導線接頭或線夾發熱,以及電氣設備中的局部過熱點等等。

帶電設備的紅外診斷技術是一門新興的學科。它是利用帶電設備的緻熱效應,采用專用設備獲取從設備表面發出的紅外輻射信息,進而判斷設備狀況和缺陷性質的一門綜合技術。

基礎理論

1672年,人們發現太陽光(白光)是由各種顔色的光複合而成,同時,牛頓做出了單色光在性質上比白色光更簡單的著名結論。使用分光棱鏡就把太陽光(白光)分解為紅、橙、黃、綠、青、藍、紫等各色單色光。1800年,英國物理學家F.W.赫胥爾從熱的觀點來研究各種色光時,發現了紅外線。他在研究各種色光的熱量時,有意地把暗室的唯一的窗戶用暗闆堵住,并在闆上開了一個矩形孔,孔内裝一個分光棱鏡。當太陽光通過棱鏡時,便被分解為彩色光帶,并用溫度計去測量光帶中不同顔色所含的熱量。為了與環境溫度進行比較,赫胥爾用在彩色光帶附近放幾支作為比較用的溫度計來測定周圍環境溫度。試驗中,他偶然發現一個奇怪的現象:放在光帶紅光外的一支溫度計,比室内其他溫度的批示數值高。經過反複試驗,這個所謂熱量最多的高溫區,總是位于光帶最邊緣處紅光的外面。于是他宣布太陽發出的輻射中除可見光線外,還有一種人眼看不見的“熱線”,這種看不見的“熱線”位于紅色光外側,叫做紅外線。紅外線是一種電磁波,具有與無線電波及可見光一樣的本質,紅外線的發現是人類對自然認識的一次飛躍,對研究、利用和發展紅外技術領域開辟了一條全新的廣闊道路。n

紅外線的波長在0.76—100μm之間,按波長的範圍可分為近紅外、中紅外、遠紅外、極遠紅外四類,它在電磁波連續頻譜中的位置是處于無線電波與可見光之間的區域。紅外線輻射是自然界存在的一種最為廣泛的電磁波輻射,它是基于任何物體在常規環境下都會産生自身的分子和原子無規則的運動,并不停地輻射出熱紅外能量,分子和原子的運動愈劇烈,輻射的能量愈大,反之,輻射的能量愈小。n

溫度在絕對零度以上的物體,都會因自身的分子運動而輻射出紅外線。通過紅外探測器将物體輻射的功率信号轉換成電信号後,成像裝置的輸出信号就可以完全一一對應地模拟掃描物體表面溫度的空間分布,經電子系統處理,傳至顯示屏上,得到與物表面體熱分布相應的熱像圖。運用這一方法,便能實現對目标進行遠距離熱狀态圖像成像和測溫并進行分析判斷。n

熱像儀

紅外熱像儀是利用紅外探測器、光學成像物鏡和光機掃描系統(先進的焦平面技術則省去了光機掃描系統)接受被測目标的紅外輻射能量分布圖形反映到紅外探測器的光敏元上,在光學系統和紅外探測器之間,有一個光機掃描機構(焦平面熱像儀無此機構)對被測物體的紅外熱像進行掃描,并聚焦在單元或分光探測器上,由探測器将紅外輻射能轉換成電信号,經放大處理、轉換或标準視頻信号通過電視屏或監測器顯示紅外熱像圖。這種熱像圖與物體表面的熱分布場相對應;實質上是被測目标物體各部分紅外輻射的熱像分布圖由于信号非常弱,與可見光圖像相比,缺少層次和立體感,因此,在實際動作過程中為更有效地判斷被測目标的紅外熱分布場,常采用一些輔助措施來增加儀器的實用功能,如圖像亮度、對比度的控制,實标校正,僞色彩描繪等技術。

發展

1800年,英國物理學家F.W.赫胥爾發現了紅外線,從此開辟了人類應用紅外技術的廣闊道路。在第二次世界大戰中,德國人用紅外變像管作為光電轉換器件,研制出了主動式夜視儀和紅外通信設備,為紅外技術的發展奠定了基礎。n

二次世界大戰後,首先由美國德克薩蘭儀器公司經過近一年的探索,開發研制的第一代用于軍事領域的紅外成像裝置,稱之為紅外尋視系統(FLIR),它是利用光學機械系統對被測目标的紅外輻射掃描。由光子探測器接收兩維紅外輻射迹象,經光電轉換及一系列儀器處理,形成視頻圖像信号。這種系統、原始的形式是一種非實時的自動溫度分布記錄儀,後來随着五十年代銻化铟和鍺摻汞光子探測器的發展,才開始出現高速掃描及實時顯示目标熱圖像的系統。n

六十年代早期,瑞典AGA公司研制成功第二代紅外成像裝置,它是在紅外尋視系統的基礎上以增加了測溫的功能,稱之為紅外熱像儀。n

開始由于保密的原因,在發達的國家中也僅限于軍用,投入應用的熱成像裝置可的黑夜或濃厚幕雲霧中探測對方的目标,探測僞裝的目标和高速運動的目标。由于有國家經費的支撐,投入的研制開發費用很大,儀器的成本也很高。以後考慮到在工業生産發展中的實用性,結合工業紅外探測的特點,采取壓縮儀器造價。降低生産成本并根據民用的要求,通過減小掃描速度來提高圖像分辨率等措施逐漸發展到民用領域。n

六十年代中期,AGA公司研制出第一套工業用的實時成像系統(THV),該系統由液氮緻冷,110V電源電壓供電,重約35公斤,因此使用中便攜性很差,經過對儀器的幾代改進,1986年研制的紅外熱像儀已無需液氮或高壓氣,而以熱電方式緻冷,可用電池供電;1988年推出的全功能熱像儀,将溫度的測量、修改、分析、圖像采集、存儲合于一體,重量小于7公斤,儀器的功能、精度和可靠性都得到了顯著的提高。n

九十年代中期,美國FSI公司首先研制成功由軍用技術(FPA)轉民用并商品化的新一紅外熱像儀(CCD)屬焦平面陣列式結構的一種凝成像裝置,技術功能更加先進,現場測溫時隻需對準目标攝取圖像,并将上述信息存儲到機内的PC卡上,即完成全部操作,各種參數的設定可回到室内用軟件進行修改和分析數據,最後直接得出檢測報告,由于技術的改進和結構的改變,取代了複雜的機械掃描,儀器重量已小于二公斤,使用中如同手持攝像機一樣,單手即可方便地操作。n

如今,紅外熱成像系統已經在電力、消防、石化以及醫療等領域得到了廣泛的應用。紅外熱像儀在世界經濟的發展中正發揮着舉足輕重的作用。n

分類

紅外熱像儀一般分光機掃描成像系統和非掃描成像系統。光機掃描成像系統采用單元或多元(元數有8、10、16、23、48、55、60、120、180甚至更多)光電導或光伏紅外探測器,用單元探測器時速度慢,主要是幀幅響應的時間不夠快,多元陣列探測器可做成高速實時熱像儀。非掃描成像的熱像儀,如近幾年推出的陣列式凝視成像的焦平面熱像儀,屬新一代的熱成像裝置,在性能上大大優于光機掃描式熱像儀,有逐步取代光機掃描式熱像儀的趨勢。其關鍵技術是探測器由單片集成電路組成,被測目标的整個視野都聚焦在上面,并且圖像更加清晰,使用更加方便,儀器非常小巧輕便,同時具有自動調焦圖像凍結,連續放大,點溫、線溫、等溫和語音注釋圖像等功能,儀器采用PC卡,存儲容量可高達500幅圖像。n

紅外熱電視是紅外熱像儀的一種。紅外熱電視是通過熱釋電攝像管(PEV)接受被測目标物體的表面紅外輻射,并把目标内熱輻射分布的不可見熱圖像轉變成視頻信号,因此,熱釋電攝像管是紅外熱電視的光鍵器件,它是一種實時成像,寬譜成像(對3—5μm及8—14μm有較好的頻率響應)具有中等分辨率的熱成像器件,主要由透鏡、靶面和電子槍三部分組成。其技術功能是将被測目标的紅外輻射線通過透鏡聚焦成像到熱釋電攝像管,采用常溫熱電視探測器和電子束掃描及靶面成像技術來實現的。熱像儀的主要參數有:n

1、工作波段;工作波段是指紅外熱像儀中所選擇的紅外探測器的響應波長區域,一般是3—5μm或8—12μm。n

2、探測器類型;探測器類型是指使用的一種紅外器件。是采用單元或多元(元數8、10、16、23、48、55、60、120、180等)光電導或光伏紅外探測器,其采用的元素有硫化鉛(PbS)、硒化鉛(PnSe)、碲化铟(InSb)、碲镉汞(HgCdTe)、碲錫鉛(PbSnTe)、鍺摻雜(Ge:X)和矽摻雜(Si:X)等。n

3、掃描制式;一般為我國标準電視制式,PAL制式。n

4、顯示方式;指屏幕顯示是黑白顯示還是僞彩顯示。n

5、溫度測定範圍;指測定溫度的最低限與最高限的溫度值的範圍。n

6、測溫準确度;指紅外熱像儀測溫的最大誤差與儀器量程之比的百分數。n

7、最大工作時間;紅外熱像儀允許連續的工作時間。n

紅外測溫

1、紅外測溫儀器的種類

紅外測溫儀器主要有3種類型:紅外熱像儀、紅外熱電視、紅外測溫儀(點溫儀)。60年代我國研制成功第一台紅外測溫儀,1990年以後又陸續生産小目标、遠距離、适合電業生産特點的測溫儀器,如西光IRT——1200D型、HCW——Ⅲ型、HCW——Ⅴ型;YHCW——9400型;WHD4015型(雙瞄準,目标D40mm,可達15m)、WFHX330型(光學瞄準,目标D50mm,可達30m)。美國生産的PM——20、30、40、50、HAS——201測溫儀;瑞典AGA公司TPT20、30、40、50等也有較廣泛的應用。DL——500E可以應用于110——500kV變電設備上,圖像清晰,溫度準确。紅外熱像儀,主要有日本TVS——2000、TVS——100,美國PM——250,瑞典AGA——THV510、550、570。國産紅外熱像儀在昆明研制成功,實現了國産化。

2、紅外測溫儀工作原理

了解紅外測溫儀的工作原理、技術指标、環境工作條件及操作和維修等是用戶正确地選擇和使用紅外測溫儀的基礎。光學系統彙集其視場内的目标紅外輻射能量,視場的大小由測溫儀的光學零件以及位置決定。紅外能量聚焦在光電探測儀上并轉變為相應的電信号。該信号經過放大器和信号處理電路按照儀器内部的算法和目标發射率校正後轉變為被測目标的溫度值。除此之外,還應考慮目标和測溫儀所在的環境條件,如溫度、氣氛、污染和幹擾等因素對性能指标的影響及修正方法。

一切溫度高于絕對零度的物體都在不停地向周圍空間發出紅外輻射能量。物體的紅外輻射能量的大小及其按波長的分布——與它的表面溫度有着十分密切的關系。因此,通過對物體自身輻射的紅外能量的測量,便能準确地測定它的表面溫度,這就是紅外輻射測溫所依據的客觀基礎。

黑體輻射定律:黑體是一種理想化的輻射體,它吸收所有波長的輻射能量,沒有能量的反射和透過,其表面的發射率為1。應該指出,自然界中并不存在真正的黑體,但是為了弄清和獲得紅外輻射分布規律,在理論研究中必須選擇合适的模型,這就是普朗克提出的體腔輻射的量子化振子模型,從而導出了普朗克黑體輻射的定律,即以波長表示的黑體光譜輻射度,這是一切紅外輻射理論的出發點,故稱黑體輻射定律。

物體發射率對輻射測溫的影響:自然界中存在的實際物體,幾乎都不是黑體。所有實際物體的輻射量除依賴于輻射波長及物體的溫度之外,還與構成物體的材料種類、制備方法、熱過程以及表面狀态和環境條件等因素有關。因此,為使黑體輻射定律适用于所有實際物體,必須引入一個與材料性質及表面狀态有關的比例系數,即發射率。該系數表示實際物體的熱輻射與黑體輻射的接近程度,其值在零和小于1的數值之間。根據輻射定律,隻要知道了材料的發射率,就知道了任何物體的紅外輻射特性。

影響發射率的主要因素在:材料種類、表面粗糙度、理化結構和材料厚度等。

當用紅外輻射測溫儀測量目标的溫度時首先要測量出目标在其波段範圍内的紅外輻射量,然後由測溫儀計算出被測目标的溫度。單色測溫儀與波段内的輻射量成比例;雙色測溫儀與兩個波段的輻射量之比成比例。

紅外系統:紅外測溫儀由光學系統、光電探測器、信号放大器及信号處理、顯示輸出等部分組成。光學系統彙聚其視場内的目标紅外輻射能量,視場的大小由測溫儀的光學零件及其位置确定。紅外能量聚焦在光電探測器上并轉變為相應的電信号。該信号經過放大器和信号處理電路,并按照儀器内療的算法和目标發射率校正後轉變為被測目标的溫度值。

性能

為了獲得精确的溫度讀數,測溫儀與測試目标之間的距離必須在合适的範圍之内,所謂“光點尺寸”(spotsize)就是測溫儀測量點的面積。您距離目标越遠,光點尺寸就越大。右圖所示為距離與光點尺寸的比率,或稱D:S。在激光瞄準器型測溫儀上,激光點在目标中心的上方,有12mm(0.47英寸)的偏置距離。

測量距離與光點尺寸

在定測量距離時,應确保目标直徑等于或大于受測的光點尺寸。右圖所标示的“1号物體”(object1)與測量儀之間的距離正,因為目标比被測光點尺寸略大一些。而“2号物體”距離太遠,因為目标小于受測的光點尺寸,即測溫儀同在測量背景物體,從而降低了讀數的精确性。

正确選擇

選擇紅外測溫儀可分為3個方面:

(1)性能指标方面,如溫度範圍、光斑尺寸、工作波長、測量精度、窗口、顯示和輸出、響應時間、保護附件等;

(2)環境和工作條件方面,如環境溫度、窗口、顯示和輸出、保護附件等;

(3)其他選擇方面,如使用方便、維修和校準性能以及價格等,也對測溫儀的選擇産生一定的影響。

随着技術和不斷發展,紅外測溫儀最佳設計和新進展為用戶提供了各種功能和多用途的儀器,擴大了選擇餘地。其他選擇方面,如使用方便、維修和校準性能以及價格等。在選擇測溫儀型号時應首先确定測量要求,如被測目标溫度,被測目标大小,測量距離,被測目标材料,目标所處環境,響應速度,測量精度,用便攜式還是在線式等等;在現有各種型号的測溫儀對比中,選出能夠滿足上述要求的儀器型号;在諸多能夠滿足上述要求的型号中選擇出在性能、功能和價格方面的最佳搭配。

1、确定測溫範圍

确定測溫範圍:測溫範圍是測溫儀最重要的一個性能指标。如Raytek(雷泰)産品覆蓋範圍為-50℃-+3000℃,但這不能由一種型号的紅外測溫儀來完成。每種型号的測溫儀都有自己特定的測溫範圍。因此,用戶的被測溫度範圍一定要考慮準确、周全,既不要過窄,也不要過寬。根據黑體輻射定律,在光譜的短波段由溫度引起的輻射能量的變化将超過由發射率誤差所引起的輻射能量的變化,因此,測溫時應盡量選用短波較好。一般來說,測溫範圍越窄,監控溫度的輸出信号分辨率越高,精度可靠性容易解決。測溫範圍過寬,會降低測溫精度。例如,如果被測目标溫度為1000℃,首先确定在線式還是便攜式,如果是便攜式。滿足這一溫度的型号很多,如3iLR3,3i2M,3i1M。如果測量精度是主要的,最好選用2M或1M型号的,因為如果選用3iLR型,其測溫範圍很寬,則高溫測量性能便差一些;如果用戶除測量1000℃的目标外,還要照顧低溫目标,那隻好選擇3iLR3。

2、确定目标尺寸

紅外測溫儀根據原理可分為單色測溫儀和雙色測溫儀(輻射比色測溫儀)。對于單色測溫儀,在進行測溫時,被測目标面積應充滿測溫儀視場。建議被測目标尺寸超過視場大小的50%為好。如果目标尺寸小于視場,背景輻射能量就會進入測溫儀的視聲符支幹擾測溫讀數,造成誤差。相反,如果目标大于測溫儀的視場,測溫儀就不會受到測量區域外面的背景影響。對于比色測溫儀,不充滿視場,測量通路上存在煙霧、塵埃、阻擋,對輻射能量有衰減時,都不對測量結果産生重大影響。對于細小而又處于運動或震動之中的目标,比色測溫儀是最佳選擇。這是由于光線直徑小,有柔性,可以在彎曲、阻擋和折疊的通道上傳輸光輻射能量。

對于Raytek(雷泰)雙色測溫儀,其溫度是由兩個獨立的波長帶内輻射能量的比值來确定的。因此當被測目标很小,沒有充滿現場,測量通路上存在煙霧、塵埃、阻擋對輻射能量有衰減時,都不會對測量結果産生影響。甚至在能量衰減了95%的情況下,仍能保證要求的測溫精度。對于目标細小,又處于運動或振動之中的目标;有時在視場内運動,或可能部分移出視場的目标,在此條件下,使用雙色測溫儀是最佳選擇。如果測溫儀和目标之間不可能直接瞄準,測量通道彎曲、狹小、受阻等情況下,雙色光纖測溫儀是最佳選擇。這是由于其直徑小,有柔性,可以在彎曲、阻擋和折疊的通道上傳輸光輻射能量,因此可以測量難以接近、條件惡劣或靠近電磁場的目标。

3、确定距離系數(光學分辨率)

距離系數由D:S之比确定,即測溫儀探頭到目标之間的距離D與被測目标直徑之比。如果測溫儀由于環境條件限制必須安裝在遠離目标之處,而又要測量小的目标,就應選擇高光學分辨率的測溫儀。光學分辨率越高,即增大D:S比值,測溫儀的成本也越高。Raytek紅外測溫儀D:S的範圍從2:1(低距離系數)到高于300:1(高距離系數)。如果測溫儀遠離目标,而目标又小,就應選擇高距離系數的測溫儀。對于固定焦距的測溫儀,在光學系統焦點處為光斑最小位置,近于和遠于焦點位置光斑都會增大。存在兩個距離系數。因此,為了能在接近和遠離焦點的距離上準确測溫,被測目标尺寸應大于焦點處光斑尺寸,變焦測溫儀有一個最小焦點位置,可根據到目标的距離進行調節。增大D:S,接收的能量就減少,如不增大接收口徑,距離系數D:S很難做大,這就要增加儀器成本。

4、确定波長範圍

目标材料的發射率和表面特性決定測溫儀的光譜相應波長對于高反射率合金材料,有低的或變化的發射率。在高溫區,測量金屬材料的最佳波長是近紅外,可選用0.8——1.0μm。其他溫區可選用1.6μm,2.2μm和3.9μm。由于有些材料在一定波長上是透明的,紅外能量會穿透這些材料,對這種材料應選擇特殊的波長。如測量玻璃内部溫度選用1.0μm,2.2μm和3.9μm(被測玻璃要很厚,否則會透過)波長;測玻璃表面溫度選用5.0μm;測低溫區選用8——14μm為宜。如測量聚乙烯塑料薄膜選用3.43μm,聚酯類選用4.3μm或7.9μm,厚度超過0.4mm的選用8-14μm。如測火焰中的CO用窄帶4.64μm,測火焰中的NO2用4.47μm。

5、确定響應時間

響應時間表示紅外測溫儀對被測溫度變化的反應速度,定義為到達最後讀數的95%能量所需要時間,它與光電探測器、信号處理電路及顯示系統的時間常數有關。Raytek(雷泰)新型紅外測溫儀響應時間可達1ms。這要比接觸式測溫方法快得多。如果目标的運動速度很快或測量快速加熱的目标時,要選用快速響應紅外測溫儀,否則達不到足夠的信号響應,會降低測量精度。然而,并不是所有應用都要求快速響應的紅外測溫儀。對于靜止的或目标熱過程存在熱慣性時,測溫儀的響應時間就可以放寬要求了。因此,紅外測溫儀響應時間的選擇要和被測目标的情況相适應。确定響應時間,主要根據目标的運動速度和目标的溫度變化速度。對于靜止的目标或目标參在熱慣性,或現有控制設備的速度受到限制,測溫儀的響應時間就可以放寬要求了。

6、信号處理功能

鑒于離散過程(如零件生産)和連續過程不同,所以要求紅外測溫儀具有多信号處理功能(如峰值保持、谷值保持、平均值)可供選用,如測溫傳送帶上的瓶子時,就要用峰值保持,其溫度的輸出信号傳送至控制器内。否則測溫儀讀出瓶子之間的較低的溫度值。若用峰值保持,設置測溫儀響應時間稍長于瓶子之間的時間間隔,這樣至少有一個瓶子總是處于測量之中。

7、環境條件考慮

測溫儀所處的環境條件對測量結果有很大影響,應予考慮并适當解決,否則會影響測溫精度甚至引起損壞。當環境溫度高,存在灰塵、煙霧和蒸汽的條件下,可選用廠商提供的保護套、水冷卻、空氣冷卻系統、空氣吹掃器等附件。這些附件可有效地解決環境影響并保護測溫儀,實現準确測溫。在确定附件時,應盡可能要求标準化服務,以降低安裝成本。當在噪聲、電磁場、震動或難以接近環境條件下,或其他惡劣條件下,煙霧、灰塵或其他顆粒降低測量能量信信号時,光纖雙色測溫儀是最佳選擇。比色測溫儀是最佳選擇。在噪聲、電磁場、震動和難以接近的環境條件下,或其他惡劣條件時,宜選擇光線比色測溫儀。

在密封的或危險的材料應用中(如容器或真空箱),測溫儀通過窗口進行觀測。材料必須有足夠的強度并能通過所用測溫儀的工作波長範圍。還要确定操作工是否也需要通過窗口進行觀察,因此要選擇合适的安裝位置和窗口材料,避免相互影響。在低溫測量應用中,通常用Ge或Si材料作為窗口,不透可見光,人眼不能通過窗口觀察目标。如操作員需要通過窗口目标,應采用既透紅外輻射又透過可見光的光學材料,如應采用既透紅外輻射又透過可見光的光學材料,如ZnSe或BaF2等作為窗口材料。

當測溫儀工作環境中存在易燃氣體時,可選用本征安全型紅外測溫儀,從而在一定濃度的易燃氣體環境中進行安全測量和監視。

在環境條件惡劣複雜的情況下,可以選擇測溫頭和顯示器分開的系統,以便于安裝和配置。可選擇與現行控制設備相匹配的信号輸出形式。

8、紅外輻射測溫儀的标定

紅外測溫儀必須經過标定才能使它正确地顯示出被測目标的溫度。如果所用的測溫儀在使用中出現測溫超差,則需退回廠家或維修中心重新标定。

應用

AIKOM公司的超小型溫度校正儀,最大限度地克服了由于超小型化而帶來的技術困難,使用戶可以攜帶到工業現場的每一角落,對其需要檢查、維修和标定的溫度探頭實施現場校驗作業,免除将其拆卸取回實驗室進行對比标定,又要重新裝回原系統的麻煩,可以大大提高工作效率,節約時間,提高設備和系統的可用率,并且為現場自動控制工程師提供了優異的維修、校驗手段。

AIKOM系列超小型溫度校正儀,一改傳統的溫度校驗模式,其應用領域之廣泛,遍及工業領域溫度測量和标定的每一環節,并提供了一個可調的模拟溫度源,對提高工藝流程控制水平、産品質量保證以及防止工業過程自動保護定值的誤動和尋找故障提供了重要的檢查手段。特别是對于溫度開關的定值檢查,可以做到快速準确而方便,其應用領域涉及:

電力:燃煤發電廠、燃氣供熱電廠、水電站、核電站、地區供熱管網、大型電力變壓器的溫度保護和信号傳送等。

冶金:鋁廠、銅廠、鋼廠等。

石化:采油、輸油管路、石化廠、煉油廠。

一般工業:冷凍機廠、空調廠、冰箱廠、啤酒廠、制藥廠、汽車廠。

溫度元件制造廠:鉑電阻、熱電偶及補償導線電纜、溫度開關、溫度傳感器制造廠。

交通運輸:機場的飛機維修、大型運輸動力系統維修、遠洋海運作為在役維修測量手段。

Aikom産品在中國市場推出的主要有二個系列(PD——1000/PD——2000)四種型号。PD——1025特點是采用半導體制冷技術,在攝氏20度環境溫度下最低溫度可以達到——25度,高溫能達到105度。PD——2300的特點是槽體有效尺寸深,加熱元件使用24V直流,安全性好和靜電影響小,利用機内風扇冷卻而不需要外壓縮空氣,采用錐形槽體和傳熱套管,熱阻極小傳熱快,溫場經過特殊補償,溫度範圍為環境溫度至攝氏400度。

PD——2800的特點是可以提供攝氏720度的高溫源,升降溫速度快,使用方便,操作簡單,經濟實用,特别适用于工業現場使用。但由于采肒型熱電偶作為槽體測溫元件,适用于高溫而精度要求不高。場稀BR>PD——2600是Aikom公司最新推出的高精度,高穩定性,高溫槽體,标定後的精度為正負0.3℃滿量程非線性誤差。它還可以通過選購一個軟件,用以實現十段可編程升降溫速率控制,用來模拟和實現工業現場實際工藝流程。也可以輸入1—5V過程電壓信号,用以改變槽體控溫單元的設定值構成環路控制。總之,它是一台功能強大的計算機程控小型便攜式恒溫槽,是世界上同類産品中性能優異的代表作。

采用紅外成像檢測技術可以對正在運行的設備進行非接觸檢測,拍攝其溫度場的分布、測量任何部位的溫度值,據此對各種外部及内部故障進行診斷,具有實時、遙測、直觀和定量測溫等優點,用來檢測發電廠、變電所和輸電線路的運轉設備和帶電設備非常方便、有效。

利用熱像儀檢測在線電氣設備的方法是紅外溫度記錄法。紅外溫度記錄法是工業上用來無損探測,檢測設備性能和掌握其運行狀态的一項新技術。與傳統的測溫方式(如熱電偶、不同熔點的蠟片等放置在被測物表面或體内)相比,熱像儀可在一定距離内實時、定量、在線檢測發熱點的溫度,通過掃描,還可以繪出設備在運行中的溫度梯度熱像圖,而且靈敏度高,不受電磁場幹擾,便于現場使用。它可以在-20℃—2000℃的寬量程内以0.05℃的高分辨率檢測電氣設備的熱緻故障,揭示出如導線接頭或線夾發熱,以及電氣設備中的局部過熱點等等。

帶電設備的紅外診斷技術是一門新興的學科。它是利用帶電設備的緻熱效應,采用專用設備獲取從設備表面發出的紅外輻射信息,進而判斷設備狀況和缺陷性質的一門綜合技術。

工廠應用

溫度、壓力、電流、電壓等都是人們所熟悉的基本物理量。在工業領域内對産品的質量、全工藝流程控制等影響很大,這些基本物理量中,對溫度的測量和标定相比之下難度要大的多。這是因為溫度系統本身的“絕熱”和“熱量傳輸”的影響是十分複雜的,這就造成了溫度測量标定統體積大,所需要的穩定時間長,精度很難提高等。并非象壓力系統那樣隻要保證壓力傳輸管路洩漏就可以保證内外壓力互不影響,這樣就很容易實現壓力的快速傳輸,穩定時間隻需幾毫秒而測量精度很容易達到萬分之幾以上。

再來看看一個高精度和高穩定度的溫度測量系統,保證其“絕熱”也就是說完全阻止熱傳輸是不可能的。人們通常使一個足夠大的體積在其達到熱平衡的條件下,認為其内部質量中心處某一小體積的溫場梯度足夠均衡,這就是為什麼溫度校準源體積龐大的重要原因之一。另外,一個溫度系統的熱傳輸也是十分複雜的,常常通過熱的傳導、對流和輻射來完成,可以想象,一下子使其溫度突變并達到熱平衡幾乎是不可能的,這就是常規溫度标定源為了保證一定的溫場均勻性,器體積大,升、降溫時間長,造成工業領域内溫度測量系統的檢查、維修和标定,費時費力費錢和由于多次拆裝溫度探頭而影響系統的可靠性。

工業領域希望能有一種小型輕巧象壓力校驗儀一樣的便攜式溫度校正源(恒溫槽),然而這種小型便攜的溫度校驗儀,必須克服由于體積減小而造成的溫場均勻性不良和穩定性差的弊端,要使溫度升降在較短的時間内達到穩定,必然要有加溫和冷卻的密切配合,都能使升溫降溫時間減少,在小型化恒溫槽内冷卻和加溫又影響到溫場均勻性,所以綜合各方面的因素,達到超小體積而具有一定精确度,快速升降溫的便攜式溫度校正儀,是溫度測量技術領域中多年探索研制渴望得到的現場應用儀器。

紅外檢測技術是“九五”國家科技成果重點推廣項目,紅外檢測是一種在線監測(不停電)式高科技檢測技術,它集光電成像技術、計算機技術、圖像處理技術于一身,通過接收物體發出的紅外線(紅外輻射),将其熱像顯示在熒光屏上,從而準确判斷物體表面的溫度分布情況,具有準确、實時、快速等優點。任何物體由于其自身分子的運動,不停地向外輻射紅外熱能,從而在物體表面形成一定的溫度場,俗稱“熱像”。紅外診斷技術正是通過吸收這種紅外輻射能量,測出設備表面的溫度及溫度場的分布,從而判斷設備發熱情況。應用紅外診技術的測試設備比較多,如紅外測溫儀、紅外熱電視、紅外熱像儀等等。像紅外熱電視、紅外熱像儀等設備利用熱成像技術将這種看不見的“熱像”轉變成可見光圖像,使測試效果直觀,靈敏度高,能檢測出設備細微的熱狀态變化,準确反映設備内部、外部的發熱情況,可靠性高,對發現設備隐患非常有效。

紅外診斷技術對電氣設備的早期故障缺陷及絕緣性能做出可靠的預測,使傳統電氣設備的預防性試驗維修(預防試驗是50年代引進前蘇聯的标準)提高到預知狀态檢修,這也是現代電力企業發展的方向。特别是大機組、超高電壓的發展,對電力系統的可靠運行,關系到電網的穩定,提出了越來越高的要求。随着現代科學技術不斷發展成熟與日益完善,利用紅外狀态監測和診斷技術具有遠距離、不接觸、不取樣、不解體,又具有準确、快速、直觀等特點,實時地在線監測和診斷電氣設備大多數故障(幾乎可以覆蓋所有電氣設備各種故障的檢測)。它備受國内外電力行業的重視(國外70年代後期普遍應用的一種先進狀态檢修體制),并得到快速發展。紅外檢測技術的應用,對提高電氣設備的可靠性與有效性,提高運行經濟效益,降低維修成本都有很重要的意義。是在預知檢修領域中普遍推廣的一種很好手段,又能使維修水平和設備的健康水平上一個台階。

注意問題

為了測溫,将儀器對準要測的物體,按觸發器在儀器的LCD上讀出溫度數據,保證安排好距離和光斑尺寸之比和視場。

紅外測溫儀使用時應注意的問題:

1、隻測量表面溫度,紅外測溫儀不能測量内部溫度。

2、波長在5um以上不能透過石英玻璃進行測溫,玻璃有很特殊的反射和透過特性,不允許精确紅外溫度讀數。但可通過紅外窗口測溫。紅外測溫儀最好不用于光亮的或抛光的金屬表面的測溫(不鏽鋼、鋁等)。

3、定位熱點,要發現熱點,儀器瞄準目标,然後在目标上作上下掃描運動,直至确定熱點。

4、注意環境條件:蒸汽、塵土、煙霧等。它阻擋儀器的光學系統而影響精确測溫。

5、環境溫度,如果測溫儀突然暴露在環境溫差為20℃或更高的情況下,允許儀器在20分鐘内調節到新的環境溫度。

上一篇:生命探測儀

下一篇:柱塞泵

相關詞條

相關搜索

其它詞條