電磁流量儀表

電磁流量儀表

适用于電磁學領域的儀器
電磁流量儀表又稱為流量計(flowmeter),流量測量是研究物質量變的科學,質量互變規律是事物聯系發展的基本規律,因此其測量對象已不限于傳統意義上的管道液體,凡需掌握量變的地方都有流量測量的問題。流量和壓力、溫度并列為三大檢測參數。對于一定的流體,隻要知道這三個參數就可計算其具有的能量,在能量轉換的測量中必須檢測此三個參數。能量轉換是一切生産過程和科學實驗的基礎,因此流量和壓力、溫度儀表一樣得到最廣泛的應用。
  • 外文名:flowmeter
  • 别名:流量計
  • 适用領域:電磁學
  • 應用學科:物理學

簡介

流量測量的發展可追溯到古代的水利工程和城市供水系統。古羅馬凱撒時代已采用孔闆測量居民的飲用水水量。公元前1000年左右古埃及用堰法測量尼羅河的流量。我國著名的都江堰水利工程應用寶瓶口的水位觀測水量大小等等。17世紀托裡拆利奠定差壓式流量計的理論基礎,這是流量測量的裡程碑。自那以後,18、19世紀流量測量的許多類型儀表的雛形開始形成,如堰、示蹤法、皮托管文丘裡管、容積、渦輪靶式流量計等。20世紀由于過程工業、能量計量、城市公用事業對流量測量的需求急劇增長,才促使儀表迅速發展,微電子技術和計算機技術的飛躍發展極大地推動儀表更新換代,新型流量計如雨後春筍般湧現出來。至今,據稱已有上百種流量計投向市場,現場使用中許多棘手的難題可望獲得解決。

常用流量儀表

1.電磁流量計; 2. 渦街流量計;

⒊ 浮子流量計

⒋科氏力質量流量計;

⒌ 熱式(氣體)質量流量計;

⒍超聲波流量計;

渦輪流量計

流量儀表——CRM企業信息化解決方案

流量儀表行業現狀及應用

流量儀表行業随着業務的不斷擴大和客戶的增多,銷售人員在管理起客戶來感覺非常的吃力,他們表 示,管理30個客戶用電子表格還是可以接受的,當要管理目前的每個人近300個客戶的時候,就不知道怎麼辦了。同時對企業老總來說銷售人員的離職,銷售過程的管理等都遇到了很大的麻煩。為了提高公司的銷售業績,方便銷售人員對客戶的管理和老總對銷售人員和客戶的管理,客戶是企業最寶貴的資源,而流量儀表行業的客戶資源高度集中,因此客戶資源的管理對于節能設備來說顯得尤為重要。但是随着公司銷售網點的不斷增加,客戶資料往往都分散在各分支機構,而對于客戶資源的管理也隻局限于相關銷售人員,機構與機構,總部與機構甚至同一機構的兩個銷售人員之間,客戶信息往往不能共享,最頭疼的是,一旦銷售人員離職,那麼公司就會流失相當一部分客戶,長此以往,後果堪憂。因此,建立一套科學的客戶關系管理體系,搭建高效持久的客戶資源共享平台

流量儀表企業通過應用奧汀CRM系統,能夠建立起完善、高效、靈活、集成的營銷信息化平台,實現了下列目标,并且幫助了企業在激烈的市場競争中取得優勢:

>1、全面有效的管理客戶信息資源與市場競争信息;

>2、全程掌握銷售中機會線索、采購、銷售、合同、費用、服務、關懷等每個細節;

>3、全方位多角度的客戶、銷售、應收帳款分析為決策提供了依據;

>4、全新的服務關懷管理思想貫穿售前、售中、售後;

>5、全員實現協同辦公、信息發布共享、文檔集中管理

>6、客戶關系管理系統能夠使銷售人員方便快捷的管理客戶,詳細記錄客戶信息,免去每天查找傳統的記事本時的麻煩;系統每天會提醒銷售人員去做今天應該去做的事情;同時可以方便的确定客戶類型,便于對重要客戶的跟蹤工作,提高工作效率。

>7、銷售員工管理系統能夠記錄銷售人員聯系業務記錄和事件記錄,詳細記錄銷售全過程,方便企業掌握客戶的所有資料,同時領導可以随時指導銷售員的銷售進程,及時調整銷售,促成銷售。實現對所有銷售網點的銷售人員進行統一管理,方便了領導進行員工考核,同時保證客戶資料不會因為員工離職造成流失。

>8、客戶服務管理系統能對客戶服務部門的工作進行全程記錄與跟蹤,客戶服務人員可以通過系統實現任務的轉交和協同。通過系統能使公司各地的客戶服務部門把任務有機的協調起來,即使異地也同樣可以在最短的時間内接受任務并實現協同,實現了“24小時内服務到位”的承諾。

上述簡要分析了流量儀表CRM應用的幾個典型方面,面向生産資料市場或生活資料市場時,系統/設備/部件、成品/粗加工産品、藥品/食品/飲品、耐用品/快速消耗品等制造品,各自适應的商業模式等有所差别,采用的策略和方法也有所不同。如果您的企業屬于生産制造行業,如果您企業的商務組織(銷售、服務、市場營銷)實施CRM管理,奧汀CRM公司将竭誠為您提供高品質的CRM軟件、管理方法和服務。

電磁流量計

發展及應用

電磁流量計是60年代随着電子技術的發展而迅速發展起來的新型流量測量儀表.它根據法拉第電磁感

流量儀表

應定律制成,用來測量導電流體的體積流量。由于其獨特的優點,目前已廣泛地應用于工業上各種導電液體的測量。例如,測量各種酸、堿、鹽等腐蝕液體;各種易燃,易爆介質;各種工業污水,紙漿,泥漿等。

測量原理

測量原理是基于法拉第電磁感應定律。即當導電液體流過電磁流量計時,導體液體中會産生與平均流速V (體積流量)成正比的電壓,其感應電壓信号通過兩個與液體接觸的電極檢測,通過電纜傳至放大器,然後轉換成統一的輸出信号。基于電磁流量計的測量原理,要求流動的液體具有最低限度的電導率

優點

①電磁流量計的變送器結構簡單,沒有可動部件,也沒有任何阻礙流體流動的節流部件,所以當流體通過時不會引起任何附加的壓力損失,同時它不會引起諸如磨損,堵塞等問題,特别适用于測量帶有固體顆粒的礦漿,污水等液固兩相流體,以及各種粘性較大的漿液等.同樣,由于它結構上無運動部件,故可通過附上耐腐蝕絕緣襯裡和選擇耐腐材料制成電極,起到很好的耐腐蝕性能,使之可用于各種腐蝕性介質的測量.

②電磁流量計是—種體積流量測量儀表,在測量過程中,它不受被測介質的溫度.粘度、密度以及電導率(在一定範圍内)的影響.因此,電磁流量計隻需經水标定以後,就可以用來測量其它導電性液體的流量,而不需要附加其它修正.

③電磁流量計的量程範圍極寬,同一台電磁流量計的量程比可達1:100.此外,電磁流量計隻與被測介質的平均流速成正比,而與軸對稱分布下的流動狀态(層流或紊流)無關.

④電磁流量計無機械慣性,反應靈敏,可以測量瞬時脈動流量,而且線性好.因此,可将測置信号直接用轉換器線性地轉換成标準信号輸出,可就地指示,也可遠距離傳送

流量儀表

缺點

電磁流量計雖具有上述優良特性,但目前它還有一些不足之處,以緻在使用上受到一定限制.主要有如下幾點:

①電磁流量計不能用于測量氣體、蒸氣以及含有大量氣體的液體.

②電磁流量計目前還不能用來測量電導率很低的液體介質,被測液體介質的電導率不能低于10-5(S/cm),相當于蒸餾水的電導率.對石油制品或者有機溶劑等還無能為力。

③由于測量管絕緣襯裡材料受溫度的限制,目前工業電磁流量計還不能測量高溫高壓流體。

④電磁流量計受流速分布影響,在軸對稱分布的條件下,流量信号與平均流速成正比.所以,電磁流量計前後也必須有一定長度的前後直管段.

⑤電磁流量計易受外界電磁幹擾的影響

玻璃轉子流量計

産品簡介:

玻璃轉子流量計主要用于化工、石油、輕工、醫藥、化肥、化纖、食品、染料、環保及科學研究等各個部門中,用來測量單相非脈動(液體或氣體)流體的流量。

耐腐蝕型流量計主要用于有腐蝕性液體、氣體介質流量的檢測,例如強酸氫氟酸除外)、強堿、氧化劑、強氧化性酸、有機溶劑和其它具有腐蝕性氣體或液體介質的流量檢測。

LZB型的測量錐管使用光滑錐形玻璃管,LZJ型使用帶筋錐形玻璃管。

特點、結構與原理

特點

原理與結構

壓力損失小

 流量計的主要測量元件為一根垂直安裝的下小上大錐形玻璃管和管内可上下移動的浮子。當流體自下而上流經錐形玻璃管時,在浮子上下之間産生壓差,浮子在此差壓作用下上升。當此上升的力、浮子所受的浮力及粘性升力與浮子的重力相等時,浮子處于平衡位置。因此,流經流量計的流體流量與浮子上升高度,即與流量計的流通面積之間存在着一定的比例關系,浮子的位置高度可作為流量量度。

性能可靠,讀數方便、直觀

結構簡單,安裝使用方便

價格便宜

渦街流量計(旋渦流量計)

渦街流量計是依據卡門旋渦原理進行封閉管道流體流量測量的新型流量計。因其具有良好的介質适應能力,無需溫度壓力補償即可直接測量蒸汽、空氣、氣體、水、液體的工況體積流量,配備溫度、壓力傳感器可測量标況體積流量和質量流量,是節流式流量計的理想替代産品。渦街流量計是在流體中安放一根(或多根)非流線型阻流體(bluff body),流體在阻流體兩側交替地分離釋放出兩串規則的旋渦,在一定的流量範圍内旋渦分離頻率正比于管道内的平均流速,通過采用各種形式的檢測元件測出旋渦頻率,從而計算出體積流量。渦街流量計适用與測量液體、氣體或蒸汽。

它沒有移動部件,也沒有污垢問題。渦街流量計會産生噪音,而且要求流體具有較高的流速,以産生旋渦。渦街流量計由于傳感器采用的檢測探頭與旋渦發生體分開安裝,而且耐高溫的壓電晶片不與介質接觸,渦街流量計具有結構簡單、通用性好和穩定性高的特點。

渦街流量計,主要用于工業管道介質流體的流量測量,如氣體、液體、蒸氣等多種介質。其特點是壓力損失小,量程範圍大,精度高,在測量工況體積流量時幾乎不受流體密度、壓力、溫度、粘度等參數的影響。無可動機械零件,因此可靠性高,維護量小。儀表參數能長期穩定。可靠性高,可在-20℃~+250℃的工作溫度範圍内工作。有模拟标準信号,也有數字脈沖信号輸出。

浮子流量計(轉子流量計)

金屬管浮子流量計實際是一種可變面積式流量計。它通常具有一段直立的錐管和一隻可以在其中自由地随流量大小上下移動的浮子。當流體自下而上流經錐管時,流體的動能在浮子上産生的推力 S 和流體的浮力 A 使浮子上升。随着錐管内壁與浮子之間的環形流通面積增大,流體動能在浮子上産生的推力 S 随之下降。當推力 S 與浮力之和等于浮子自身重力 G 時,浮子處于平衡狀态,并穩定在某一高度上,該高度位置對應的刻度指示流過流量計的流量。傳感器将流量的大小轉換成浮子的位移量,通過磁耦合系統,将浮子位移量傳給轉換器指示出流量的大小。

浮子流量計是工業自動化過程控制中常用的一種改變面積流量測量儀表。具有體積小、檢測範圍大、使用方便等特點。它可以用來測量液體、氣體、以及蒸汽的流量,特别适宜低流速小流量的介質流量測量。

科氏力質量流量計

概述

科氏力質量流量計是運用流體質量流量對振動管振蕩的調制作用即科裡奧利力現象為原理,以質量流

流量儀表

量測量為目的的質量流量計,一般由傳感器和變送器組成。

羅斯蒙特質量流量計廣泛應用于石化等領域,是當今世界上最先進的流量測量儀表之一,在我廠主要産品如乙烯丙烯和主要原料輕烴等的測量中使用可靠,精度高達1.7‰,為我廠的能源、物料的流量測量提高了準确度,避免了不必要的損失,創造了可觀的經濟效益。

質量流量測量原理

一台質量流量計的計量系統包括一台傳感器和一台用于信号處理的變送器。Rosemount質量流量計依據牛頓第二定律:力=質量×加速度(F=ma),當質量為m的質點以速度V在對P軸作角速度ω旋轉的管道内移動時,質點受兩個分量的加速度及其力:

(1)法向加速度,即向心加速度αr,其量值等于2ωr,朝向P軸;

(2)切向角速度αt,即科裡奧利加速度,其值等于2ωV,方向與αr垂直。由于複合運動,在質點的αt方向上作用着科裡奧利力Fc=2ωVm,管道對質點作用着一個反向力-Fc=-2ωVm。

當密度為ρ的流體在旋轉管道中以恒定速度V流動時,任何一段長度Δx的管道将受到一個切向科裡奧利力ΔFc: ΔFc=2ωVρAΔx (1)

式中,A—管道的流通截面積。

由于存在關系式:mq=ρVA

所以:ΔFc =2ωqmΔx (2)

因此,直接或間接測量在旋轉管中流 動流體的科裡奧利力就可以測得質量流量。

科氏力及作用

傳感器内是U型流量管,在沒有流體流經流量管時,流量管由安裝在流量管端部的電磁驅動線圈驅動,其振幅小于1mm,頻率約為80Hz,流體流入流量管時被強制接受流量管的上下垂直運動。在流量管向上振動的半個周期内,流體反抗管子向上運動而對流量管施加一個向下的力;反之,流出流量管的流體對流量管施加一個向上的力以反抗管子向下運動而使其垂直動量減少。這便導緻流量管産生扭曲,在振動的另外半個周期,流量管向下振動,扭曲方向則相反,這一扭曲現象被稱之為科裡奧利(Coriolis)現象,即科氏力。

根據牛頓第二定律,流量管扭曲量的大小完全與流經流量管的質量流量大小成正比,安裝于流量管兩側的電磁信号檢測器用于檢測流量管的振動。當沒有流體流過流量管時,流量管不産生扭曲,兩側電磁信号檢測器的檢測信号是同相位的;當有流體流經流量管時,流量管産生扭曲,從而導緻兩個檢測信号産生相位差,這一相位差的大小直接正比于流經流量管的質量流量。

由于這種質量流量計主要依靠流量管的振動來進行流量測量,流量管的振動,以及流過管道的流體的

數顯流量儀表

沖力産生了科氏力,緻使每個流管産生扭轉,扭轉量與振動周期内流過流管的質量流速成正比。由于一個流管的扭曲滞後于另一流管的扭曲,質量管上的傳感器輸出信号可通過電路比較,來确定扭曲量。

電路中由時間差檢測器測量左右檢測信号之間的滞後時間。這個“時間差”ΔT經過數字量測量、處理、濾波以減少噪聲,提高測量分辨率。時間差乘上流量标定系數來表示質量流量。由于溫度影響流管鋼性,科氏力産生的扭曲量也将受溫度影響。被測量的流量不斷由變送器調整,後者随時檢測粘在流管外表上的鉑電阻溫度計輸出。變送器用一個三相的電阻溫度計電橋放大電路來測量傳感器溫度,放大器的輸出電壓轉化成頻率,并由計數器數字化後讀入微處理器。

密度測量原理

流量管的一端被固定,而另一端是自由的。這一結構可看做一重物懸挂在彈簧上構成的重物/彈簧系統,一旦被施以一運動,這一重物/彈簧系統将在它的諧振頻率上振動,這一諧振頻率與重物的質量有關。質量流量計的流量管是通過驅動線圈和反饋電路在它的諧振頻率上振動,振動管的諧振頻率與振動管的結構、材料及質量有關。振動管的質量由兩部分組成:振動管本身的質量和振動管中介質的質量。每一台傳感器生産好後振動管本身的質量就确定了,振動管中介質的質量是介質密度與振動管體積的乘積,而振動管的體積對每種口徑的傳感器來說是固定的,因此振動頻率直接與密度有相應的關系,那麼,對于确定結構和材料的傳感器,介質的密度可以通過測量流量管的諧振頻率獲得。

利用流量測量的一對信号檢測器可獲得代表諧振頻率的信号,一個溫度傳感器的信号用于補償溫度變化而引起的流量管鋼性的變化,振動周期的測量是通過測量流量管的振動周期和溫度獲得,介質密度的測量利用了密度與流量管振動周期的線性關系及标準的校定常數。

科氏質量流量傳感器振動管測量密度時,管道鋼性、幾何結構和流過流體質量共同決定了管道裝置的固有頻率,因而由測量的管道頻率可推出流體密度。變送器用一個高頻時鐘來測量振動周期的時間,測量值經數字濾波,對于由操作溫度導緻管道鋼性變化,進而引起固有頻率的變化進行補償後,用傳感器密度标定系數來計算過程流體密度。

信号特性

羅斯蒙特公司的變送器為模塊化并帶有微處理器功能,配合ASICS數字技術,可選擇數字通信協議。它與傳感器連接使用可獲得高精确度的質量流量、密度、溫度和體積流量信号,并将獲得的信号轉換為模拟量、頻率等輸出信号,還可使用275型HART協議通信手操器AMS、Prolink軟件對其組态、檢查及通信。

SP數字信号處理器特性

DSP數字信号處理器是一個實時處理信号的微處理器,在科裡奧利流量計裡,我們使測量管在一個已知的頻率下振動,因此任何在此振動頻率範圍之外的頻率都是“噪聲”,需要除掉它們以準确地确定質量流量。例如,一個50Hz或60Hz的信号很可能來源于與附近動力線的耦合。如何在實際上“過濾”這些多餘的信号則需要一些更多的在那時刻所得到的背景信息,圖8表明了噪聲如何出現在原轉換器信号上,以及被過濾後的最終信号。

與使用時間常量去阻抑和穩定信号相比,使用數字信号處理(DSP)技術的主要好處之一,是能夠以一個被提高了的采樣率去過濾實時信号,減少了流量計對流量的階躍變化的響應時間。使用多參數數字(MVD)變送器的響應時間比使用模拟信号處理的傳統變送器快2~4倍,更快的響應時間會提高短批量控制的效率和精确度。

DSP技術另一個頗有價值且更富有挑戰性的應用實例是氣體測量,因為高速氣體通過流量計會引起較嚴重的噪聲。通過高準Elite系列傳感器,與流量信号混雜的噪聲被減至最校現在DSP技術能更好地濾波,并進一步減小了質量流量計對噪聲的敏感度。采用MVD變送器測量氣體的結果在重複性和精确度上都有了顯著提高。

DSP技術提供了一個“通往處理的窗戶”,當浏覽這個窗戶時,首先集中在測量管振動頻率附近的信号上。實際上,有意地抛棄了其餘的信息,很可能正是隐藏在這些“無用的”數據裡的信息會鋪平通往新的診斷技術的道路。例如,頻譜分析可能會引導我們取得在夾雜空氣或團狀流動流體測量上的進展,流體在測量管内壁的附着也是另一個有希望被DSP技術檢測到的故障,頻譜的變化也很可能被用于預測傳感器的故障。

熱式(氣體)質量流量計

原理

熱式氣體質量流量計采用熱擴散原理熱擴散技術是一種在苛刻條件下性能優良、可靠性高的技術,其典型傳感元件包括兩個熱電阻(鉑RTD),一個是速度傳感器,一個是自動補償氣體溫度變化的溫度傳感器。當這兩個RTD被置于介質中時,其中速度傳感器被加熱到環境溫度以上的一個恒定的溫差,另一個溫度傳感器用于感應介質溫度。流經速度傳感器的氣體質量流量是通過傳感元件的熱傳遞量來計算的。氣體速率增加,傳感器傳遞給介質的熱量增多,因此需要供給更多的功率,而電子單元加熱RTD 的功率與質量流量成一定的對應關系。

熱式氣體質量流量計是氣體流量計量中新型儀表,區别于其它氣體流量計不需要進行壓力和溫度修正,直接測量氣體的質量流量,一支傳感器可以做到量程從極低到高量程。它适合單一氣體和固定比例多組份氣體的測量。它依據的原理是流體吸收熱的速度直接與質量流量相關。移動的氣體分子撞擊熱電阻時吸收帶走熱量,流率越大,接觸熱電阻的分子越多,吸收的熱量越多,熱吸收與某種氣體的分子數,熱學特性和流動特性有關。

特點

産品特點直接測量氣體質量流量,無需溫度、壓力補償低流速測量;

一個流量計能同時兼顧小流量和大流量測量,特别适合大口徑測量。

典型應用

工業管道中氣體流量測量

燃氣過程中空氣流量測量

煙囪排出的煙氣流量測量

水處理中瀑氣流量測量

水泥,卷煙,玻璃廠生産過程中氣體流量測量壓縮空氣流量測量

天然氣,煤氣,液化氣,火炬氣,氫氣等氣體流量測量

鋼鐵廠加氣流量測量

超聲波流量計

概述

超聲波在流動的流體中傳播時就載上流體流速的信息。因此通過接收到的超聲波就可以檢測出流體的流速,從而換算成流量。根據檢測的方式,可分為傳播速度差法、多普勒法、波束偏移法、噪聲法及相關法等不同類型的超聲波流量計。起聲波流量計是近十幾年來随着集成電路技術迅速發展才開始應用的一種

優點

非接觸式儀表,适于測量不易接觸和觀察的流體以及大管徑流量。它與水位計聯動可進行敞開水流的流量測量。使用超聲波流量比不用在流體中安裝測量元件故不會改變流體的流動狀态,不産生附加阻力,儀表的安裝及檢修均可不影響生産管線運行因而是一種理想的節能型流量計。

衆所周知,目前的工業流量測量普遍存在着大管徑、大流量測量困難的問題,這是因為一般流量計随着測量管徑的增大會帶來制造和運輸上的困難,造價提高、能損加大、安裝不僅這些缺點,超聲波流量計均可避免。因為各類超聲波流量計均可管外安裝、非接觸測流,儀表造價基本上與被測管道口徑大小無關,而其它類型的流量計随着口徑增加,造價大幅度增加,故口徑越大超聲波流量計比相同功能其它類型流量計的功能價格比越優越。被認為是較好的大管徑流量測量儀表,多普勒法超聲波流量計可測雙相介質的流量,故可用于下水道及排污水等髒污流的測量。在發電廠中,用便攜式超聲波流量計測量水輪機進水量、汽輪機循環水量等大管徑流量,比過去的皮脫管流速計方便得多。超聲被流量汁也可用于氣體測量。管徑的适用範圍從2cm到5m,從幾米寬的明渠、暗渠到500m寬的河流都可适用。

另外,超聲測量儀表的流量測量準确度幾乎不受被測流體溫度、壓力、粘度、密度等參數的影響,又可制成非接觸及便攜式測量儀表,故可解決其它類型儀表所難以測量的強腐蝕性、非導電性、放射性及易燃易爆介質的流量測量問題。另外,鑒于非接觸測量特點,再配以合理的電子線路,一台儀表可适應多種管徑測量和多種流量範圍測量。超聲波流量計的适應能力也是其它儀表不可比拟的。超聲波流量計具有上述一些優點因此它越來越受到重視并且向産品系列化、通用化發展,現已制成不同聲道的标準型、高溫型、防爆型、濕式型儀表以适應不同介質,不同場合和不同管道條件的流量測量。

缺點

超聲波流量計目前所存在的缺點主要是可測流體的溫度範圍受超聲波換能鋁及換能器與管道之間的耦合材料耐溫程度的限制,以及高溫下被測流體傳聲速度的原始數據不全。目前我國隻能用于測量200℃以下的流體。另外,超聲波流量計的測量線路比一般流量計複雜。這是因為,一般工業計量中液體的流速常常是每秒幾米,而聲波在液體中的傳播速度約為1500m/s左右,被測流體流速(流量)變化帶給聲速的變化量最大也是10-3數量級.若要求測量流速的準确度為1%,則對聲速的測量準确度需為10-5~10-6數量級,因此必須有完善的測量線路才能實現,這也正是超聲波流量計隻有在集成電路技術迅速發展的前題下才能得到實際應用的原因。

基本原理和應用情況

超聲波流量計由超聲波換能器、電子線路及流量顯示和累積系統三部分組成。超聲波發射換能器将電能轉換為超聲波能量,并将其發射到被測流體中,接收器接收到的超聲波信号,經電子線路放大并轉換為代表流量的電信号供給顯示和積算儀表進行顯示和積算。這樣就實現了流量的檢測和顯示。

超聲波流量計常用壓電換能器。它利用壓電材料的壓電效應,采用适出的發射電路把電能加到發射換能器的壓電元件上,使其産生超聲波振勸。超聲波以某一角度射入流體中傳播,然後由接收換能器接收,并經壓電元件變為電能,以便檢測。發射換能器利用壓電元件的逆壓電效應,而接收換能器則是利用壓電效應。

超聲波流量計換能器的壓電元件常做成圓形薄片,沿厚度振動。薄片直徑超過厚度的10倍,以保證振動的方向性。壓電元件材料多采用锆钛酸鉛。為固定壓電元件,使超聲波以合适的角度射入到流體中,需把元件故人聲楔中,構成換能器整體(又稱探頭)。聲楔的材料不僅要求強度高、耐老化,而且要求超聲波經聲楔後能量損失小即透射系數接近1。常用的聲楔材料是有機玻璃,因為它透明,可以觀察到聲楔中壓電元件的組裝情況。另外,某些橡膠、塑料及膠木也可作聲楔材料。

超聲波流量計的電子線路包括發射、接收、信号處理和顯示電路。測得的瞬時流量和累積流量值用數字量或模拟量顯示。

根據對信号檢測的原理,目前超聲波流量計大緻可分傳播速度差法(包括:直接時差法、時差法、相位差法、頻差法)波束偏移法、多普勒法、相關法、空間濾波法及噪聲法等類型,如圖所示。其中以噪聲法原理及結構最簡單,便于測量和攜帶,價格便宜但準确度較低,适于在流量測量準确度要求不高的場合使用。由于直接時差法、時差法、頻差法和相位差法的基本原理都是通過測量超聲波脈沖順流和逆流傳報時速度之差來反映流體的流速的,故又統稱為傳播速度差法。其中頻差法和時差法克服了聲速随流體溫度變化帶來的誤差,準确度較高,所以被廣泛采用。按照換能器的配置方法不同,傳播速度差撥又分為:Z法(透過法)、V法(反射法)、X法(交叉法)等。波束偏移法是利用超聲波束在流體中的傳播方向随流體流速變化而産生偏移來反映流體流速的,低流速時,靈敏度很低适用性不大.多普勒法是利用聲學多普勒原理,通過測量不均勻流體中散射體散射的超聲波多普勒頻移來确定流體流量的,适用于含懸浮顆粒、氣泡等流體流量測量。相關法是利用相關技術測量流量,原理上,此法的測量準确度與流體中的聲速無關,因而與流體溫度,濃度等無關,因而測量準确度高,适用範圍廣。但相關器價格貴,線路比較複雜。在微處理機普及應用後,這個缺點可以克服。噪聲法(聽音法)是利用管道内流體流動時産生的噪聲與流體的流速有關的原理,通過檢測噪聲表示流速或流量值。其方法簡單,設備價格便宜,但準确度低。

以上幾種方法各有特點,應根據被測流體性質.流速分布情況、管路安裝地點以及對測量準确度的要求等因素進行選擇。一般說來由于工業生産中工質的溫度常不能保持恒定,故多采用頻差法及時差法。隻有在管徑很大時才采用直接時差法。對換能器安裝方法的選擇原則一般是:當流體沿管軸平行流動時,選用Z法;當流動方向與管鈾不平行或管路安裝地點使換能器安裝間隔受到限制時,采用V法或X法。當流場分布不均勻而表前直管段又較短時,也可采用多聲道(例如雙聲道或四聲道)來克服流速擾動帶來的流量測量誤差。多普勒法适于測量兩相流,可避免常規儀表由懸浮粒或氣泡造成的堵塞、磨損、附着而不能運行的弊病,因而得以迅速發展。随着工業的發展及節能工作的開展,煤油混合(COM)、煤水泥合(cwm)燃料的輸送和應用以及燃料油加水助燃等節能方法的發展,都為多普勒超聲波流量計應用開辟廣闊前景。

渦輪流量計

渦輪流量計是一種速度式儀表,它具有壓力損失小,準确度高,起步流量低,抗震與抗脈動流動性好,範圍度寬容易維修等特點,渦輪流量計是将渦輪置于被測流體中,當氣體進入流量計時,在特殊結構整流器的作用下得到整流并加速,在一定流量範圍内渦輪的角速度和流量成正比,利用電磁感應原理感應出與流體體積流量成正比的脈沖信号,該信号經前置放大器,整形後,得到實際流量,并顯示在LCD屏上。如果同溫度,壓力傳感器檢測到的信号一起輸入智能流量計算儀進行運算處理,将得到标準狀況下的流量,并顯示在LCD屏上.

渦輪流量計是一種葉輪式儀表,其工作原理相對簡單。渦輪流量計本體管道中心安放一個渦輪,兩端由軸承支撐.當流體通過管道時,沖擊渦輪葉片,對渦輪産生驅動力矩,使渦輪克服摩擦力矩和流體阻力矩而産生旋轉.在一定的流量範圍内,對一定的流體介質粘度,渦輪的旋轉角速度與流體流速成正比.由此,流體流速可通過渦輪的旋轉角速度得到,從而可以計算得到通過管道的流體流量.同時渦輪的轉速通過裝在機殼外的傳感線圈來檢測.當渦輪葉片切割由殼體内永久磁鋼産生的磁力線時,就會引起傳感線圈中的磁通變化.傳感線圈将檢測到的磁通周期變化信号送入前置放大器,對信号進行放大、整形,産生與流速成正比的脈沖信号,送入單位換算與流量積算電路得到并顯示累積流量值;同時亦将脈沖信号送入頻率電流轉換電路,将脈沖信号轉換成模拟電流量,進而指示瞬時流量值。

渦輪流量計是速度式流量儀表的一種,根據其音譯國内又稱為透平流量計。渦輪流量計根據其測量介質的不同又分為氣體渦輪流量計液體渦輪流量計。在各種流量計中渦輪流量計是重複性高、精确度最佳的産品。如結構簡單、加工零部件少、重量輕、維修方便、流通能力大(同樣口徑可通過的流量大)和可适應高參數(高溫、高壓和低溫)等。渦輪流量計廣泛應用于以下一些測量對象:石油、有機液體、無機液、液化氣、天然氣、煤氣和低溫流體等。在國外液化石油氣成品油和輕質原油等的轉運及集輸站,大型原油輸送管線的首末站都大量采用它進行貿易結算。

流量儀表在線檢驗方法

電磁流量計在線檢驗方法,其在線的檢驗規範需要得到國家技術監督部門和各相關行業協會對的認可電磁流量計在應用過程中的精度保證一直是用戶所關心的熱點問題。

在過去,電磁流量計的校驗必需送到專門的标定校驗設備上進行檢查。但是,随着電磁流量計制造技術的發展和應用行業的擴展,電磁流量計的使用越來越多、口徑越來越大,送回校驗裝置上校驗的難度也越來越大。

流量測驗斷面布設合理、測驗設施完備、測次和測點布置符合水文測驗規範要求;流量計率定方法正确,精度較高,滿足臨時通水期間水量計量要求。專家組一緻同意該成果通過審查。

它被廣泛用于冶金、電力、煤炭、化工、石油、交通、建築、輕紡、食品、醫藥、農業、環境保護及人民日常生活等國民經濟各個領域,是發展工農業生産,節約能源,改進産品質量,提高經濟效益和管理水平的重要工具在國民經濟中占有重要的地位。在過程自動化儀表與裝置中,流量計有兩大功用:作為過程自動化控制系統的檢測儀表和測量物料數量的總量表。

流量儀表發展趨勢

1. 結構日趨簡潔、輕便

早期流量儀表為純機械就地顯示,如容積式流量計。不僅結構複雜笨重,重量/口徑比很大;且其中的轉動件因磨損需經常維修。随着工業管道口徑日益增大,插入式儀表以其結構簡單、輕巧、拆裝簡便,日益受到用戶青睐,而近十年發展最快的電磁、超聲流量儀表,管道中更是沒有任何轉動件、阻力件,結構更為簡潔,且壓損小,準确度高,是最有發展潛力的流量儀表。

2. 功能力求完善、多樣

早期流量儀表為就地顯示(如容積、轉子),随着工業水平的不斷提高,已不能适應工藝要求數十台儀表集中顯示、調節、控制。有必要将傳感器(也稱一次表,如孔闆、噴嘴、内錐)與變送器(也稱二次表)分離開。并将流量參數轉換為電參數,遠傳至中央控制室。随着工業規模再擴大,模拟信号已無法适應,輸出信号需轉換為數字信号,以适應現場總線系統、SCADA系統的要求。

為增加儀表的可靠性,不少儀表已增加多達10餘種自診斷功能。如KROHNE公司推出的Optiflux電磁流量計,可自診斷如氣泡、電極腐蝕、積垢、電極短路、流體導電率、非滿管、襯裡損壞、外部磁場等多方面的儀表狀況。

儀表功能的多樣化也是一種發展趨勢,如超聲除測流量外,還可測流體成分,聲速;科氏除測流量外,還可測流體密度。

應用領域

流量測量技術與儀表的應用大緻有以下幾個領域。

一,工業生産過程

流量儀表是過程自動化儀表與裝置中的大類儀表之一,它被廣泛适用于冶金、電力、煤炭、化工、石油、交通、建築、輕紡、食品、醫藥、農業、環境保護及人民日常生活等國民經濟各個領域,是發展工農業生産,節約能源,改進産品質量,提高經濟效益和管理水平的重要工具在國民經濟中占有重要的地位。在過程自動化儀表與裝置中,流量儀表有兩大功用:作為過程自動化控制系統的檢測儀表和測量物料數量的總量表。

二,能源計量

能源分為一次能源(煤炭、原油、煤層氣、石油氣和天然氣)、二次能源(電力、焦炭、人工燃氣、成品油、液化石油氣、蒸汽)及載能工質(壓縮空氣、氧、氮、氫、水)等。能源計量是科學管理能源,實現節能降耗,提高經濟效益的重要手段。流量儀表是能源計量儀表的重要組成部分,水、人工燃氣、天然氣、蒸汽和油品這些常用的能源都使用着數量極其龐大的流量計,它們是能源管理和經濟核算不可缺少的工具。

三,環境保護工程

煙氣,廢液、污水等的排放嚴重污染大氣和水資源,嚴重威脅人類生存環境。國家把可持續發展列為國策,環境保護将是21世紀的最大課題。空氣和水的污染要得到控制,必須加強管理,而管理的基礎是污染量的定量控制。

我國是以煤為主要能源的國家,全國有上百萬個煙囪不停地向大氣排放煙氣。煙氣排放控制是根治污染的重要項目,每個煙囪必須是安裝煙氣分析儀表和流量計,組成連椟排放監視系統。煙氣的流量沆量有很大因難,它的難度為煙囪尺寸大且形狀不規則,氣體組分變化不定,流速範圍大,髒污,灰塵,腐蝕,高溫,無直管段等。

四,交通運輸

有五種方式:鐵路公路、航空、水運、和管道運輸。其中管道運輸雖早已有之,但應用并不普遍。随着環保問題的突出,管道運輸的特點引起人們的重視。管道運輸必須裝備流量計,它是控制、分配和調度的眼睛,亦是安全監沒和經濟核算的必備工具。

五,生物技術

21世紀将迎來生命科學的世紀,以生物技術為特征的産業将獲得迅速發展。生物技術中需監測計量的物質很多,如血液,尿液等。儀表開發的難度極大,品種繁多。

六,科學實驗

科學實驗需要的流量計不但數量多,且品種極其繁雜。據統計流量計100多種中很大一部分是應科研之需用的,它們并不批量生産,在市面出售,許多科研機構和大企業皆設專門小組研制專用的流量計。

七,海洋氣象,江河湖泊

這些領域為敞開流道,一般需檢測流速,然後推算流量。流速計和流量計所依據的物理原理及流體力學基礎是共通的但是儀表原理及結構以及使用條件有很大差别。

電磁流量計技術參數

執行标準 

 電磁流量計(JJG1033-2007)

公稱通經(mm) 

(特殊規格可定制) 

 管道式四氟襯裡:DN10-DN600

 管道式橡膠襯裡:DN40-DN2000

流動方向 

 正,反,淨流量

量程比 

 150:1

重複性誤差 

 測量值的±0.1%

展開表格

相關詞條

相關搜索

其它詞條