PID控制器

PID控制器

工業生産儀器
工業生産過程中,對于生産裝置的溫度、壓力、流量、液位等工藝變量常常要求維持在一定的數值上,或按一定的規律變化,以滿足生産工藝的要求。PID控制器是根據PID控制原理對整個控制系統進行偏差調節,從而使被控變量的實際值與工藝要求的預定值一緻。不同的控制規律适用于不同的生産過程,必須合理選擇相應的控制規律,否則PID控制器将達不到預期的控制效果。
  • 中文名:PID控制器
  • 外文名:
  • 用途:
  • 組成:比例單元P積分單元I微分單元D
  • 參數:KpKiKd
  • 作用:維持生産裝置中的變量穩定
  • 目的:滿足生産工藝的要求

基本概況

AI系列多路PID溫度控制器采用熱電偶或Pt100二線制輸入,SSR固态繼電器電壓輸出或L3繼電器輸出,各通道可以有不同的輸入規格,既可以獨立使用,也可以和觸摸屏或PLC聯機使用。産品按十年以上壽命設計,五年免費保修,應用了宇電公司新一代技術,使多路溫控器達到與單回路儀表相當的精度與抗幹擾能力。

PID控制器是一個在工業控制應用中常見的反饋回路部件。這個控制器把收集到的數據和一個參考值進行比較,然後把這個差别用于計算新的輸入值,這個新的輸入值的目的是可以讓系統的數據達到或者保持在參考值。和其他簡單的控制運算不同,PID控制器可以根據曆史數據和差别的出現率來調整輸入值,這樣可以使系統更加準确,更加穩定。可以通過數學的方法證明,在其他控制方法導緻系統有穩定誤差或過程反複的情況下,一個PID反饋回路卻可以保持系統的穩定。

反饋回路

一個控制回路包括三個部分:

系統的傳感器得到的測量結果控制器作出決定通過一個輸出設備來作出反應控制器從傳感器得到測量結果,然後用需求結果減去測量結果來得到誤差。然後用誤差來計算出一個對系統的糾正值來作為輸入結果,這樣系統就可以從它的輸出結果中消除誤差。

在一個PID回路中,這個糾正值有三種算法,消除目前的誤差,平均過去的誤差,和透過誤差的改變來預測将來的誤差。

比如說,假如一個水箱在為一個植物提供水,這個水箱的水需要保持在一定的高度。一個傳感器就會用來檢查水箱裡水的高度,這樣就得到了測量結果。控制器會有一個固定的用戶輸入值來表示水箱需要的水面高度,假設這個值是保持65%的水量。控制器的輸出設備會連在一個馬達控制的水閥門上。打開閥門就會給水箱注水,關上閥門就會讓水箱裡的水量下降。這個閥門的控制信号就是我們控制的變量,它也是這個系統的輸入來保持這個水箱水量的固定。

PID控制器可以用來控制任何可以被測量的并且可以被控制的變量。比如,它可以用來控制溫度,壓強,流量,化學成分,速度等等。汽車上的巡航定速功能就是一個例子。

一些控制系統把數個PID控制器串聯起來,或是鍊成網絡。這樣的話,一個主控制器可能會為其他控制輸出結果。一個常見的例子是馬達的控制。我們會常常需要馬達有一個控制的速度并且停在一個确定的位置。這樣呢,一個子控制器來管理速度,但是這個子控制器的速度是由控制馬達位置的主控制器來管理的。

連合和串聯控制在化學過程控制系統中是很常見的。

理論編輯

PID是以它的三種糾正算法而命名的。這三種算法都是用加法調整被控制的數值。而實際上這些加法運算大部分變成了減法運算因為被加數總是負值。這三種算法是:

比例-來控制當前,誤差值和一個負常數P(表示比例)相乘,然後和預定的值相加。P隻是在控制器的輸出和系統的誤差成比例的時候成立。這種控制器輸出的變化與輸入控制器的偏差成比例關系。比如說,一個電熱器的控制器的比例尺範圍是10°C,它的預定值是20°C。那麼它在10°C的時候會輸出100%,在15°C的時候會輸出50%,在19°C的時候輸出10%,注意在誤差是0的時候,控制器的輸出也是0。

積分-來控制過去,誤差值是過去一段時間的誤差和,然後乘以一個負常數I,然後和預定值相加。I從過去的平均誤差值來找到系統的輸出結果和預定值的平均誤差。一個簡單的比例系統會振蕩,會在預定值的附近來回變化,因為系統無法消除多餘的糾正。通過加上一個負的平均誤差比例值,平均的系統誤差值就會總是減少。所以,最終這個PID回路系統會在預定值定下來。

微分-來控制将來,計算誤差的一階導,并和一個負常數D相乘,最後和預定值相加。這個導數的控制會對系統的改變作出反應。導數的結果越大,那麼控制系統就對輸出結果作出更快速的反應。這個D參數也是PID被稱為可預測的控制器的原因。D參數對減少控制器短期的改變很有幫助。一些實際中的速度緩慢的系統可以不需要D參數。用更專業的話來講,一個PID控制器可以被稱作一個在頻域系統的濾波器。這一點在計算它是否會最終達到穩定結果時很有用。如果數值挑選不當,控制系統的輸入值會反複振蕩,這導緻系統可能永遠無法達到預設值。

控制規律

盡管不同類型的控制器,其結構、原理各不相同,但是基本控制規律隻有三個:比例(P)控制、積分(I)控制和微分(D)控制。這幾種控制規律可以單獨使用,但是更多場合是組合使用。如比例(P)控制、比例-積分(PI)控制、比例-積分-微分(PID)控制等。

比例(P)控制

單獨的比例控制也稱“有差控制”,輸出的變化與輸入控制器的偏差成比例關系,偏差越大輸出越大。實際應用中,比例度的大小應視具體情況而定,比例度太大,控制作用太弱,不利于系統克服擾動,餘差太大,控制質量差,也沒有什麼控制作用;比例度太小,控制作用太強,容易導緻系統的穩定性變差,引發振蕩。

對于反應靈敏、放大能力強的被控對象,為提高系統的穩定性,應當使比例度稍小些;而對于反應遲鈍,放大能力又較弱的被控對象,比例度可選大一些,以提高整個系統的靈敏度,也可以相應減小餘差。

單純的比例控制适用于擾動不大,滞後較小,負荷變化小,要求不高,允許有一定餘差存在的場合。工業生産中比例控制規律使用較為普遍。

比例積分(PI)控制

比例控制規律是基本控制規律中最基本的、應用最普遍的一種,其最大優點就是控制及時、迅速。隻要有偏差産生,控制器立即産生控制作用。但是,不能最終消除餘差的缺點限制了它的單獨使用。克服餘差的辦法是在比例控制的基礎上加上積分控制作用。

積分控制器的輸出與輸入偏差對時間的積分成正比。這裡的“積分”指的是“積累”的意思。積分控制器的輸出不僅與輸入偏差的大小有關,而且還與偏差存在的時間有關。隻要偏差存在,輸出就會不斷累積(輸出值越來越大或越來越小),一直到偏差為零,累積才會停止。所以,積分控制可以消除餘差。積分控制規律又稱無差控制規律。

積分時間的大小表征了積分控制作用的強弱。積分時間越小,控制作用越強;反之,控制作用越弱。

積分控制雖然能消除餘差,但它存在着控制不及時的缺點。因為積分輸出的累積是漸進的,其産生的控制作用總是落後于偏差的變化,不能及時有效地克服幹擾的影響,難以使控制系統穩定下來。所以,實用中一般不單獨使用積分控制,而是和比例控制作用結合起來,構成比例積分控制。這樣取二者之長,互相彌補,既有比例控制作用的迅速及時,又有積分控制作用消除餘差的能力。因此,比例積分控制可以實現較為理想的過程控制。

比例積分控制器是目前應用最為廣泛的一種控制器,多用于工業生産中液位、壓力、流量等控制系統。由于引入積分作用能消除餘差,彌補了純比例控制的缺陷,獲得較好的控制質量。但是積分作用的引入,會使系統穩定性變差。對于有較大慣性滞後的控制系統,要盡量避免使用。

比例微分(PD)控制

比例積分控制對于時間滞後的被控對象使用不夠理想。所謂“時間滞後”指的是:當被控對象受到擾動作用後,被控變量沒有立即發生變化,而是有一個時間上的延遲,比如容量滞後,此時比例積分控制顯得遲鈍、不及時。為此,人們設想:能否根據偏差的變化趨勢來做出相應的控制動作呢?猶如有經驗的操作人員,即可根據偏差的大小來改變閥門的開度(比例作用),又可根據偏差變化的速度大小來預計将要出現的情況,提前進行過量控制,“防患于未然”。這就是具有“超前”控制作用的微分控制規律。微分控制器輸出的大小取決于輸入偏差變化的速度。

微分輸出隻與偏差的變化速度有關,而與偏差的大小以及偏差是否存在與否無關。如果偏差為一固定值,不管多大,隻要不變化,則輸出的變化一定為零,控制器沒有任何控制作用。微分時間越大,微分輸出維持的時間就越長,因此微分作用越強;反之則越弱。當微分時間為0時,就沒有微分控制作用了。同理,微分時間的選取,也是需要根據實際情況來确定的。

微分控制作用的特點是:動作迅速,具有超前調節功能,可有效改善被控對象有較大時間滞後的控制品質;但是它不能消除餘差,尤其是對于恒定偏差輸入時,根本就沒有控制作用。因此,不能單獨使用微分控制規律。

比例和微分作用結合,比單純的比例作用更快。尤其是對容量滞後大的對象,可以減小動偏差的幅度,節省控制時間,顯著改善控制質量。

PID控制

最為理想的控制當屬比例-積分-微分控制規律。它集三者之長:既有比例作用的及時迅速,又有積分作用的消除餘差能力,還有微分作用的超前控制功能。

當偏差階躍出現時,微分立即大幅度動作,抑制偏差的這種躍變;比例也同時起消除偏差的作用,使偏差幅度減小,由于比例作用是持久和起主要作用的控制規律,因此可使系統比較穩定;而積分作用慢慢把餘差克服掉。隻要三個作用的控制參數選擇得當,便可充分發揮三種控制規律的優點,得到較為理想的控制效果。

調試步驟

由于自動控制系統被控對象的千差萬别,PID的參數也必須随之變化,以滿足系統的性能要求。這就給使用者帶來相當的麻煩,特别是對初學者。下面簡單介紹一下調試PID參數的一般步驟:

1.負反饋

自動控制理論也被稱為負反饋控制理論。首先檢查系統接線,确定系統的反饋為負反饋。例如電機調速系統,輸入信号為正,要求電機正轉時,反饋信号也為正(PID算法時,誤差=輸入-反饋),同時電機轉速越高,反饋信号越大。其餘系統同此方法。

2.PID調試一般原則

a.在輸出不振蕩時,增大比例增益P。

b.在輸出不振蕩時,減小積分時間常數Ti。

c.在輸出不振蕩時,增大微分時間常數Td。

3.一般步驟

a.确定比例增益P

确定比例增益P時,首先去掉PID的積分項和微分項,一般是令Ti=0、Td=0(具體見PID的參數設定說明),使PID為純比例調節。輸入設定為系統允許的最大值的60%~70%,由0逐漸加大比例增益P,直至系統出現振蕩;再反過來,從此時的比例增益P逐漸減小,直至系統振蕩消失,記錄此時的比例增益P,設定PID的比例增益P為當前值的60%~70%。比例增益P調試完成。

b.确定積分時間常數Ti

比例增益P确定後,設定一個較大的積分時間常數Ti的初值,然後逐漸減小Ti,直至系統出現振蕩,之後在反過來,逐漸加大Ti,直至系統振蕩消失。記錄此時的Ti,設定PID的積分時間常數Ti為當前值的150%~180%。積分時間常數Ti調試完成。

c.确定積分時間常數Td

積分時間常數Td一般不用設定,為0即可。若要設定,與确定P和Ti的方法相同,取不振蕩時的30%。

d.系統空載、帶載聯調,再對PID參數進行微調,直至滿足要求。

參數整定

PID控制器的參數整定是控制系統設計的核心内容。它是根據被控過程的特性确定PID控制器的比例系數、積分時間和微分時間的大小。PID控制器參數整定的方法很多,概括起來有兩大類:

1.理論計算整定法

它主要是依據系統的數學模型,經過理論計算确定控制器參數。這種方法所得到的計算數據未必可以直接用,還必須通過工程實際進行調整和修改。

2.工程整定方法

它主要依賴工程經驗,直接在控制系統的試驗中進行,且方法簡單、易于掌握,在工程實際中被廣泛采用。PID控制器參數的工程整定方法,主要有臨界比例法、反應曲線法和衰減法。三種方法各有其特點,其共同點都是通過試驗,然後按照工程經驗公式對控制器參數進行整定。但無論采用哪一種方法所得到的控制器參數,都需要在實際運行中進行最後調整與完善。現在一般采用的是臨界比例法。利用該方法進行PID控制器參數的整定步驟如下:

(1)首先預選擇一個足夠短的采樣周期讓系統工作;

(2)僅加入比例控制環節,直到系統對輸入的階躍響應出現臨界振蕩,記下這時的比例放大系數和臨界振蕩周期;

(3)在一定的控制度下通過公式計算得到PID控制器的參數。

調試原則

a.在輸出不振蕩時,增大比例增益P。

b.在輸出不振蕩時,減小積分時間常數Ti。

c.在輸出不振蕩時,增大微分時間常數Td。

調試步驟

a.确定比例增益P

确定比例增益P時,首先去掉PID的積分項和微分項,一般是令Ti=0、Td=0(具體見PID的參數設定說明),使PID為純比例調節。輸入設定為系統允許的最大值的60%~70%,由0逐漸加大比例增益P,直至系統出現振蕩;再反過來,從此時的比例增益P逐漸減小,直至系統振蕩消失,記錄此時的比例增益P,設定PID的比例增益P為當前值的60%~70%。比例增益P調試完成。

b.确定積分時間常數Ti

比例增益P确定後,設定一個較大的積分時間常數Ti的初值,然後逐漸減小Ti,直至系統出現振蕩,之後在反過來,逐漸加大Ti,直至系統振蕩消失。記錄此時的Ti,設定PID的積分時間常數Ti為當前值的150%~180%。積分時間常數Ti調試完成。

c.确定積分時間常數Td

積分時間常數Td一般不用設定,為0即可。若要設定,與确定P和Ti的方法相同,取不振蕩時的30%。

d.系統空載、帶載聯調,再對PID參數進行微調,直至滿足要求。

變速積分的基本思想是,設法改變積分項的累加速度,使其與偏差大小相對應:偏差越大,積分越慢;反之則越快,有利于提高系統品質。

相關詞條

相關搜索

其它詞條