激光焊接機

激光焊接機

激光材料加工用的機器
激光焊接機,又常稱為激光焊機、鐳射焊機,是激光材料加工用的機器。
  • 中文名:激光焊接機
  • 别名:激光焊機
  • 類别:焊接機械
  • 功能:激光材料加工用的機器
  • 原理:激光焊接是利用高能量的激光脈沖對材料進行微小區域内的局部加熱,激光輻射的能量通過熱傳導向材料的内部擴散,将材料熔化後形成特定熔池
  • 出産:北京廣電韻電子設備有限公司

工作原理

激光焊接是利用高能量的激光脈沖對材料進行微小區域内的局部加熱,激光輻射的能量通過熱傳導向材料的内部擴散,将材料熔化後形成特定熔池。它是一種新型的焊接方式,主要針對薄壁材料、精密零件的焊接,可實現點焊、對接焊、疊焊、密封焊等,深寬比高,焊縫寬度小,熱影響區小、變形小,焊接速度快,焊縫平整、美觀,焊後無需處理或隻需簡單處理,焊縫質量高,無氣孔,可精确控制,聚焦光點小,定位精度高,易實現自動化。

主要種類

激光焊接機

激光焊接機又常稱為激光焊機、能量負反饋激光焊接機、雷射焊接機、鐳射焊機、激光冷焊機、激光焊機、激光焊接設備等。按其工作方式常可分為激光模具燒焊機(手動激光焊接設備)、自動激光焊接機、首飾激光焊接機、激光點焊機光纖傳輸激光焊接機、振鏡焊接機、手持式焊接機等,專用激光焊接設備有傳感器焊機、矽鋼片激光焊接設備、鍵盤激光焊接設備。

可焊接圖形有:點、直線、圓、方形或由AUTOCAD軟件繪制的任意平面圖形。

參數

功率密度

功率密度是激光加工中最關鍵的參數之一。采用較高的功率密度,在微秒時間範圍内,表層即可加熱至沸點,産生大量汽化。因此,高功率密度對于材料去除加工,如打孔、切割、雕刻有利。對于較低功率密度,表層溫度達到沸點需要經曆數毫秒,在表層汽化前,底層達到熔點,易形成良好的熔融焊接。因此,在傳導型激光焊接中,功率密度在範圍在104~106W/cm2。

脈沖波形

脈沖波形在焊接中是一個重要問題,尤其對于薄片焊接更為重要。當高強度束射至材料表面,金屬表面将會有的能量反射而損失掉,且反射率随表面溫度變化。在一個脈沖作用期間内,金屬反射率的變化很大。

脈沖寬度

脈寬是脈沖焊接的重要參數之一,它既是區别于材料去除和材料熔化的重要參數,也是決定加工設備造價及體積的關鍵參數。

離焦量的影響

激光焊接機

因為激光焦點處光斑中心的功率密度過高,容易蒸發成孔。離開激光焦點的各平面上,功率密度分布相對均勻。離焦方式有兩種:正離焦與負離焦。焦平面位于工件上方為正離焦,反之為負離焦。按幾何光學理論,當正負離焦平面與焊接平面距離相等時,所對應平面上功率密度近似相同,但實際上所獲得的熔池形狀不同。負離焦時,可獲得更大的熔深,這與熔池的形成過程有關。

參數表圖

直徑

接頭形式

工藝參數

接頭性能

輸出功/J脈沖

脈沖寬度/ms

最大載荷/N

電阻/Ω

301

不鏽鋼

1Cr17Ni7

Φ0.33

對接

8

3.0

97

0.003

重疊

8

3.0

103

0.003

十字

8

3.0

113

0.003

T形

8

3.4

106

0.003

展開表格

對比圖

對比項目

激光焊接

電子束焊接

鎢極惰性氣體保護電弧焊

熔化極氣體保護焊

電阻焊

焊接效率

0

0

-

-

+

大深度比

+

+

-

-

-

小熱影響區

+

+

-

-

0

高焊接速率

+

+

-

+

-

焊縫斷面形貌

+

+

0

0

0

展開表格

應用範圍

制造業

激光拼焊技術在國外轎車制造中得到廣泛應用,據統計2000年全球範圍内剪裁坯闆激光拼焊生産線超過100條,年産轎車構件拼焊坯闆7000萬件,并繼續以較高速度增長。國内生産引進車型也采用一些剪裁坯闆結構。日本以CO2激光焊代替閃光對焊進行制鋼業軋鋼卷材的連接,在超薄闆焊接的研究,如闆厚100微米以下的箔片,無法熔焊,但通過有特殊輸出功率波形的YAG激光焊得以成功,顯示激光焊的廣闊前途。日本還在世界上首次成功開發将YAG激光焊用于核反應堆中蒸氣發生器細管的維修等,在國内還進行齒輪激光焊接技術

粉末冶金

随着科學技術的不斷發展,許多工業技術上對材料特殊要求,應用冶鑄方法制造的材料已不能滿足需要。由于粉末冶金材料具有特殊的性能和制造優點,在某些領域如汽車、飛機、工具刃具制造業中正在取代傳統的冶鑄材料,随着粉末冶金材料的日益發展,它與其它零件的連接問題顯得日益突出,使粉末冶金材料的應用受到限制。在八十年代初期,激光焊以其獨特的優點進入粉末冶金材料加工領域,為粉末冶金材料的應用開辟了新的前景,如采用粉末冶金材料連接中常用的焊的方法焊接金剛石,由于結合強度低,熱影響區寬特别是不能适應高溫及強度要求高而引起釺料熔化脫落,采用激光焊接可以提高焊接強度以及耐高溫性能。

汽車工業

20世紀80年代後期,千瓦級激光成功應用于工業生産,而今激光焊接生産線已大規模出現在汽車制造業,成為汽車制造業突出的成就之一。歐洲的汽車制造廠早在20世紀80年代就率先采用激光焊接車頂、車身、側框等金焊接,90年代美國竟相将激光焊接引入汽車制造,盡管起步較晚,但發展很快。意大利在大多數鋼闆組件的焊接裝配中采用了激光焊接,日本在制造車身覆蓋件中都使用了激光焊接和切割工藝,高強鋼激光焊接裝配件因其性能優良在汽車車身制造中使用得越來越多,根據美國金屬市場統計,至2002年底,激光焊接鋼結構的消耗将達到70000t比1998年增加3倍。根據汽車工業批量大、自動化程度高的特點,激光焊接設備向大功率、多路式方向發展。在工藝方面美國Sandia國家實驗室與PrattWitney聯合進行在激光焊接過程中添加粉末金屬和金屬絲的研究,德國不萊梅應用光束技術研究所在使用激光焊接鋁合金車身骨架方面進行了大量的研究,認為在焊縫中添加填充餘屬有助于消除熱裂紋,提高焊接速度,解決公差問題,開發的生産線已在工廠投入生産。

電子工業

激光焊接在電子工業中,特别是微電子工業中得到了廣泛的應用。由于激光焊接熱影響區小、加熱集中迅速、熱應力低,因而正在集成電路和半導體器件殼體的封裝中,顯示出獨特的優越性,在真空器件研制中,激光焊接也得到了應用,如聚焦極與不鏽鋼支持環、快熱陰極燈絲組件等。傳感器或溫控器中的彈性薄壁波紋片其厚度在0.05-0.1mm,采用傳統焊接方法難以解決,TIG焊容易焊穿,等離子穩定性差,影響因素多而采用激光焊接效果很好,得到廣泛的應用。

生物醫學

生物組織的激光焊接始于20世紀70年代,用激光焊接輸卵管和血管的成功焊接及顯示出來的優越性,使更多研究者嘗試焊接各種生物組織,并推廣到其他組織的焊接。有關激光焊接神經方面國内外的研究主要集中在激光波長、劑量及其對功能恢複以及激光焊料的選擇等方面的研究,劉銅軍進行了激光焊接小血管及皮膚等基礎研究的基礎上又對大白鼠膽總管進行了焊接研究。激光焊接方法與傳統的縫合方法比較,激光焊接具有吻合速度快,愈合過程中沒有異物反應,保持焊接部位的機械性質,被修複組織按其原生物力學性狀生長等優點将在以後的生物醫學中得到更廣泛的應用。

其他領域

在其他行業中,激光焊接也逐漸增加特别是在特種材料焊接中國内進行了許多研究,如對BT20钛合金、HEl30合金、Li-ion電池等激光焊接,德國開發出了一種用于平闆玻璃的激光焊接新技術。

主要特點

激光焊接機的自動化程度高焊接工藝流程簡單。非接觸式的操作方法能夠達到潔淨、環保的要求。采用激光焊接機加工工件能夠提高工作效率,成品工件外觀美觀、焊縫小、焊接深度大、焊接質量高。激光焊接機廣泛應用于牙科義齒的加工,鍵盤焊接,矽鋼片焊接,傳感器焊接,電池密封蓋的焊接等等方面。但激光焊接機的成本較高,對工件裝配的精度要求也較高,在這些方面仍有局限性。

發展曆史

在20世界70年代以前,由于高功率連續波形(CW)激光器尚未開發出來,所以研究重點集中在脈沖激光焊接(PW)上。早期的激光焊接研究實驗大多數是利用紅寶石脈沖激光器,1ms脈沖典型的峰值輸出功率Pm為5KW左右,脈沖能量為1~5J,脈沖頻率就小于等于1赫茲。當時雖然能夠活的較高的脈沖能量,但這些激光器的平均輸出功率P卻相當低,這主要是由激光器很低的工作效率和發光物質的受激性狀決定。激光器由于具有較高的平均功率,在它出現之後很快就成為點焊和縫焊的優選設備,其焊接過程是通過焊點搭接而進行的,直到1KW以上的連續功率波形激光器誕生以後具有真正意義的激光縫焊才得以實現。

焊接自動化技術的現狀與展望

随着數字化技術日益成熟,代表處動地接技術的數字焊機、數字化控制技術業已穩步進入市場。三峽工程、西氣東輸工程、航天工程、船舶工程等國家大型基礎工程,有效地促進了先進焊接特别是焊接自動化技術的發展與進步。汽車及零部件的制造對焊接的自動化程度要求日新月異。我國焊接産業逐步走向“高效、自動化、智能化”。我國的焊接自動化率還不足30%,同發達工業國家的80%差距甚遠。從20世紀未國家逐漸在各個行業推廣自動焊的基礎焊接方式——氣體保護焊,來取代傳統的手工電弧焊,已初見成效。可以預計在未來,國内自動化焊接技術将以前所未有的速度發展。

高效、自動化焊接技術的現狀

20世紀90年代,我國焊接界把實現焊接過程的機械化、自動化作為戰略目标,已經在職各行業的科技發展中付諸實施,在發展焊接生産自動化,研究和開發焊接生産線及柔性制造技術,發展應用計算機輔助設計與制造;藥芯焊絲由2%增長到20%;埋弧焊焊材也将在10%的水平上繼續增長。其中藥芯焊絲的增長幅度明顯加大,在未來20年内會超過實芯焊絲,最終将成為焊接中心的主導産品。

焊接自動化技術的展望

電子技術、計算機微電子住處和自動化技術的發展,推動了焊接自動化技術的發展。特别是數控技術、柔性制造技術和信息處理技術等單元技術的引入,促進了焊接自動化技術革命性的發展。

(1)焊接過程控制系統的智能化是焊接自動化的核心問題之一,也是我們未來開展研究的重要方向。我們應開展最佳控制方法方面的研究,包括線性和各種非線性控制。最具代表性的是焊接過程的模糊控制、神經網絡控制,以及專家系統的研究。

(2)焊接柔性化技術也是我們着力研究的内容。在未來的研究中,我們将各種光、機、電技術與焊接技術有機結合,以實現焊接的精确化和柔性化。用微電子技術改造傳統焊接工藝裝備,是提高焊接自動化水平淡的根本途徑。将數控技術配以各類焊接機械設備,以提高其柔性化水平,是我們當前的一個研究方向;另外,焊接機器人與專家系統的結合,實現自動路徑規劃、自動校正軌迹、自動控制熔深等功能,是我們研究的重點。

(3)焊接控制系統的集成是人與技術的集成和焊接技術與信息技術的集成。集成系統中信息流和物質流是其重要的組成部分,促進其有機地結合,可大大降低信息量和實時控制的要求。注意發揮人在控制和臨機處理的響應和判斷能力,建立人機聖誕的友好界面,使人和自動系統和諧統一,是集成系統的不可低估的因素。

(4)提高焊接電源的可靠性、質量穩定性和控制,以及優良的動感性,也是我們着重研究的課題。開發研制具有調節電弧運動、送絲和焊槍姿态,能探測焊縫坡開頭、溫度場、熔池狀态、熔透情況,适時提供焊接規範參數的高性能焊機,并應積極開發焊接過程的計算機模拟技術。使焊接技術由“技藝”向“科學”演變實現焊接自動化的一個重要方面。本世紀頭十年,将是焊接行業飛速發展的有利時期。我們廣大焊接工作者任重而道遠,務必樹立知難而上的決心。抓住機遇,為我國焊接自動化水平的提高而努力奮鬥。

焊接方法

電阻焊

它用來焊接薄金屬件,在兩個電極間夾緊被焊工件通過大的電流熔化電極接觸的表面,即通過工件電阻發熱來實施焊接。工件易變形,電阻焊通過接頭兩邊焊合,而激光焊隻從單邊進行,電阻焊所用電極需經常維護以清除氧化物和從工件粘連着的金屬,激光焊接薄金屬搭接接頭時并不接觸工件,再者光束還可進入常規焊難以焊及的區域,焊接速度快。

氩弧焊

使用非消耗電極與保護氣體,常用來焊接薄工件,但焊接速度較慢,且熱輸入比激光焊大很多,易産生變形。

等離子弧焊

與氩弧類似,但其焊炬會産生壓縮電弧,以提高弧溫和能量密度,它比氩弧焊速度快、熔深大,但遜于激光焊。

電子束焊

它靠一束加速高能密度電子流撞擊工件,在工件表面很小密積内産生巨大的熱,形成"小孔"效應,從而實施深熔焊接。電子束焊的主要缺點是需要高真空環境以防止電子散射,設備複雜,焊件尺寸和形狀受到真空室的限制,對焊件裝配質量要求嚴格,非真空電子束焊也可實施,但由于電子散射而聚焦不好影響效果。電子束焊還有磁偏移和X射線問題,由于電子帶電,會受磁場偏轉影響,故要求電子束焊工件焊前去磁處理。X射線在高壓下特别強,需對操作人員實施保護。激光焊則不需真空室和對工件焊前進行去磁處理,它可在大氣中進行,也沒有防X射線問題,所以可在生産線内聯機操作,也可焊接磁性材料。

相關詞條

相關搜索

其它詞條