电动助力转向系统

电动助力转向系统

一种动力转向系统
电动助力转向系统(Electric Power Steering,缩写EPS)是一种直接依靠电机提供辅助扭矩的动力转向系统,与传统的液压助力转向系统HPS(Hydraulic Power Steering)相比,EPS系统具有很多优点。EPS主要由扭矩传感器、车速传感器、电动机、减速机构和电子控制单元(ECU)等组成。
    中文名:电动助力转向系统 外文名: 用途: 英文名:Electric Power Steering 英文简称:EPS 构成部件:扭矩传感器、车速传感器等 发展历程:四个阶段 发明者:日本Honda公司 发明时间:1990年

发展历史

在汽车的发展历程中,转向系统经历了四个发展阶段:从最初的机械式转向系统(Manual Steering,简称MS)发展为液压助力转向系统(Hydraulic Power Steering,简称HPS),然后又出现了电控液压助力转向系统(Electro Hydraulic Power Steering,简称EHPS)和电动助力转向系统(Electric Power Steering,简称EPS)。

装配机械式转向系统的汽车,在泊车和低速行驶时 驾驶员的转向操纵负担过于沉重,为了解决这个问题,美国GM公司在20世纪50年代率先在轿车上采用了液压助力转向系统。但是,液压助力转向系统无法兼顾车辆低速时的转向轻便性和高速时的转向稳定性,因此在1983年日本Koyo公司推出了具备车速 感应功能的电控液压助力转向系统。这种新型的转向系统可以随着车速的升高提供逐渐减小的转向助力,但是结构复杂、造价较高,而且无法克服液压系统自身所具有的许多缺点,是一种介于液压助力转向和电动助力转向之间的过渡产品。到了1988年,日本Suzuki公司首先在小型轿车Cervo上配备了Koyo公司研发的转向柱助力式电动助力转向系统;1990年,日本Honda公司也在运动型轿车NSX上采用了自主研发的齿条助力式电动助力转向系统,从此揭开了电动助力转向在汽车上应用的历史。

种类及优缺点

我们常见的助力转向有机械液压助力、电子液压助力、电动助力三种。

机械液压助力

机械液压助力是我们最常见的一种助力方式,它诞生于1902年,由英国人Frederick W. Lanchester发明,而最早的商品化应用则推迟到了半个世纪之后,1951年克莱斯勒把成熟的液压转向助力系统应用在了Imperial车系上。由于技术成熟可靠,而且成本低廉,得以被广泛普及。机械液压助力系统的主要组成部分有液压泵、油管、压力流体控制阀、V型传动皮带、储油罐等等。这种助力方式是将一部分发动机动力输出转化成液压泵压力,对转向系统施加辅助作用力,从而使轮胎转向。 

电子液压助力

由于机械液压助力需要大幅消耗发动机动力,所以人们在机械液压助力的基础上进行改进,开发出了更节省能耗的电子液压助力转向系统。这套系统的转向油泵不再由发动机直接驱动,而是由电动机来驱动,并且在之前的基础上加装了电控系统,使得转向辅助力的大小不光与转向角度有关,还与车速相关。机械结构上增加了液压反应装置和液流分配阀,新增的电控系统包括车速传感器、电磁阀、转向ECU等。

电动助力

EPS就是英文Electric Power Steering的缩写,即电动助力转向系统。电动助力转向系统是汽车转向系统的发展方向。该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。正是有了这些优点,电动助力转向系统作为一种新的转向技术,将挑战大家都非常熟知的、已具有50多年历史的液压转向系统。

驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转矩电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。

优势优点

相比传统液压动力转向系统,电动助力转向系统具有以下优点: 1、只在转向时电机才提供助力,可以显著降低燃油消耗 传统的液压助力转向系统有发动机带动转向油泵,不管转向或者不转向都要消耗发动机部分动力。而电动助力转向系统只是在转向时才由电机提供助力,不转向时不消耗能量。因此,电动助力转向系统可以降低车辆的燃油消耗。 与液压助力转向系统对比试验表明:在不转向时,电动助力转向可以降低燃油消耗2.5%;在转向时,可以降低5.5%。 2、转向助力大小可以通过软件调整,能够兼顾低速时的转向轻便性和高速时的操纵稳定性,回正性能好。传统的液压助力转向系统所提供的转向助力大小不能随车速的提高而改变。这样就使得车辆虽然在低速时具有良好的转向轻便性,但是在高速行驶时转向盘太轻,产生转向“发飘”的现象,驾驶员缺少显著的“路感”,降低了高速行驶时的车辆稳定性和驾驶员的安全感。 电动助力转向系统提供的助力大小可以通过软件方便的调整。在低速时,电动助力转向系统可以提供较大的转向助力,提供车辆的转向轻便性;随着车速的提高,电动助力转向系统提供的转向助力可以逐渐减小,转向时驾驶员所需提供的转向力将逐渐增大,这样驾驶员就感受到明显的“路感”,提高了车辆稳定性。 电动助力转向系统还可以施加一定的附加回正力矩或阻尼力矩,使得低速时转向盘能够精确的回到中间位置,而且可以抑制高速回正过程中转向盘的振荡和超调,兼顾了车辆高、低速时的回正性能。3、结构紧凑,质量轻,生产线装配好,易于维护保养电动助力转向系统取消了液压转向油泵、油缸、液压 管路、油罐等部件,而且电机及减速机构可以和转向柱、转向器做成一个整体,使得整个转向系统结构紧凑,质量轻,在生产线上的装配性好,节省装配时间,易于维护保养。 4、通过程序的设置,电动助力转向系统容易与不同车型匹配,可以缩短生产和开发的周期。由于电动助力转向系统具有上述多项优点,因此近年来获得了越来越广泛的应用。电动助力转向系统是在机械式转向系统的基础上,加装了电机及减速机构、转矩转角传感器、 车速传感器和ECU 电控单元而成。

工作原理

电助力转向系统的工作原理如下:首先,转矩传感器测出驾驶员施加在转向盘上的操纵力矩,车速传感器测出车辆当前的行驶速度,然后将这两个信号传递给ECU;ECU根据内置的控制策略,计算出理想的目标助力力矩,转化为电流指令给电机;然后,电机产生的助力力矩经减速机构放大作用在机械式转向系统上,和驾驶员的操纵力矩一起克服转向阻力矩,实现车辆的转向。

车辆启动后系统开始工作,当车速小于一定速度(如80km/h),这些型号输送到控制模块,控制你快依据转向盘的扭矩、转动方向和车速等数据向伺服电机发出控制指令,使伺服电机输出相应大小及方向的扭矩以产生助动力,当不转向时,电控单元不向伺服电机发送扭矩信号,伺服电机的电流趋向于零。因此,在直行驾驶而无需操作转向盘时,将不会消耗任何发动机的动力,降低了燃油消耗。本系统提供的转向助力与车速成反比,当车速在一定速度(如80km/h)或以上时,伺服电机的电流也趋向于零,所以车速高助力越小。因此,无论在高速、低速行驶过程操作过程中汽车具有更高的稳定性,驾驶员自身保持均衡不变的转向力度。

电动助力转向系统的关键技术主要包括硬件和软件两个方面。

硬件技术主要涉及传感器、电机和ECU。传感器是整个系统的信号源,其精度和可靠性十分重要。电机是整个系统的执行器,电机性能好坏决定了系统的表现。ECU是整个系统的运算中心,因此ECU的性能和可靠性至关重要。

软件技术主要包括控制策略和故障诊断与保护程序两个部分。控制策略用来决定电机的目标电流,并跟踪该电流,使得电机输出相应的助力矩。故障诊断与保护程序用来监控系统的运行,并在必要时发出警报和实施一定的保护措施。

工作过程

电动助力转向系统(EPS)作为传统液压系统的替代产品已经进入汽车制造领域。与先前的预测相反,EPS不仅适用于小型汽车,而且某些12V中型汽车也适于安装电动系统。EPS系统包含下列组件:转矩传感器,检测转向轮的运动情况和车辆的运动情况;电控单元,根据转矩传感器提供的信号计算助力的大小;电机,根据电控单元输出值生成转动力;减速齿轮,提高电机产生的转动力,并将其传送至转向机构。n其它车辆系统控制算法输入信息是由汽车CAN总线提供的(例如转向角和汽车速度等等)。电机驱动还需要其它信息,例如电机转子位置(电机传感器提供)和相电流(电流传感器提供)。 电机由四个MOSFET控制。由于微控制器无法直接驱动MOSFET的大型栅电容,因此需要采用驱动IC形式的接口。出于安全考虑,完整的电机控制系统必须实施监控。将电机控制系统集成在PCB上,通常包含一个继电器,该继电器可作为主开关使用,在检测出故障的情况下,断开电机与电控单元。微控器(μC)必须控制EPS系统的直流有刷电机。微控器根据转矩传感器提供的转向轮所需转矩信息,形成一个电流控制回路。为了提高系统的安全水平,该微控器应有一个板载振荡器,这样即使在外部振荡器出现故障的情况下,亦可确保微控器的性能,同时还应具备片上 看门狗。英飞凌公司的XC886集成了所有重要的微控器组件,其它安全特性可通过软件实现,如果必须执行iec61508等行业安全标准规范,就不得不完成各种诊断和自检任务,因而会增加微控器的工作负荷。目前不同客户采用的转矩传感器与转子位置传感器差别很大。他们采用不同的测量原理,如分解器、 电磁共振器、基于传感器的集成巨磁阻(IGMR)。n功率级的作用是开关电机电流。该功率级具有两个功能:驱动IC控制和保护MOSFET,MOSFET本身又可负责开关电流。MOSFET和分区(例如驱动IC与MOSFET结合在一个器件或多个器件内)由电机功率决定。n微控器的PWM输出端口提供的驱动电流和电压太低,无法直接与MOSFET栅极实现连接。驱动IC的作用是提供充足的电流,为MOSFET的栅极进行充电和放电,使其在20kHz的条件下正常实现开关,同时保证为高低侧MOSFET提供高栅源电压Vgs,确保获得低导通电阻。如果高侧MOSFET处于开通状态,源极电位就接近电池电平。要想使MOSFET到达标称导通电阻,栅源电压需高于8V。MOSFET完全导通所需的最理想的电压是10V或以上,因此所需的栅极电位就比电池电压高出10V。电荷泵是确保该功能最大程度降低MOSFET功耗(即使低电池电压条件下)的电路。图2说明,英飞凌驱动IC即使在8V电池电压条件下,其低高侧MOSFET的栅源电压也可达到11V。这将确保在低电池电压条件下,获得低功耗和高系统效率。n电荷泵设计的其它关键特性是可以根据不同PWM模式的要求,实现极低(低至1%)和极高的占空比(高至100%)。驱动IC的另一个重要功能是检测短路情况,避免损坏MOSFET。受影响的MOSFET将关闭,诊断结果提交给微控器。电流水平可实现调节。nMOSFET通常应用在一个多半桥拓扑结构内,由驱动IC控制。根据ISO7637规定,在12V电网中,电池电压通常可高达16V。在选择MOSFET电压级别时,必须针对二极管恢复过程中所出现的感应瞬变现象提供足够的安全边际(Ls x dl/dt,Ls代表杂散电感,dl/dt代表开关时的电流斜率)。在低dl/dt和低杂散电感的系统中,可使用30V MOSFET,但通常最好使用40V的MOSFET,可提供更高的安全边际。最新的40V MOSFET技术采用D2PAK(TO263)封装在2mm和180A条件下,以及采用较小的DPAK(TO252)装封在低于4mm和90A的条件,可提供极低的导通电阻,使EPS系统设计具备极高的功率密度和效率。

相关词条

相关搜索

其它词条