四氧化三铁

四氧化三铁

具有磁性的黑色晶体
四氧化三铁,化学式Fe3O4。别名氧化铁黑、磁铁、吸铁石,为具有磁性的黑色晶体,故又称为磁性氧化铁。不可以读作"偏铁酸亚铁"或"偏铁酸铁"Fe(FeO2)2,不是氧化铁与氧化亚铁的混合物,但可以近似地看作是氧化亚铁和氧化铁的化合物。此物质溶于酸,不溶于水、碱及乙醇、乙醚等有机溶剂。天然的四氧化三铁不溶于酸,潮湿状态下在空气中容易氧化成三氧化二铁。通常用作颜料和抛光剂,也可用于制造录音磁带和电讯器材。
    中文名:四氧化三铁 外文名:ferroferric oxide 别名:磁性氧化铁、磁铁、吸铁石 化学式:Fe₃O₄(FeO·Fe₂O₃) 分子量:231.54 熔点:1867.5K(1594.5℃)℃ 密度:5.18g/cm³

基本资料

俗称“磁性氧化铁”。化学式fe3o4。黑色晶体或红黑色粉末。溶于酸,不溶于水。具强磁性。灼烧到500°c磁性消失,冷却后磁性恢复。在空气中灼烧变成氧化铁。由铁或氧化亚铁在空气(氧气)中加热或由氧化铁在400°c时还原制得。

基本信息

中文名称:四氧化三铁

中文别名:磁性氧化铁

英文名称:ferrosoferric oxide

CAS号:1317-61-9

分子式:Fe3O4

分子量:231.533

精确质量:231.78400

安全信息

符号:GHS02GHS07GHS08GHS09

信号词:危险

危害声明:H225; H304; H315; H336; H361d; H373; H411

警示性声明:P210; P261; P273; P281; P301 + P310; P331

海关编码:2821100000

危险类别码:R36/37/38

安全说明:S26; S36/37/39; S62; S46

危险品标志:Xn; Xi; F

用途

四氧化三铁是一种常用的磁性材料。

特制的纯净四氧化三铁用来作录音磁带和电讯器材的原材料。

天然的磁铁矿是炼铁的原料。

用于制底漆和面漆。

四氧化三铁是生产铁触媒(一种催化剂)的主要原料。

它的硬度很大,可以作磨料。已广泛应用于汽车制动领域,如:刹车片、刹车蹄等。

四氧化三铁在国内焊接材料领域已得到认可,用于电焊条、焊丝的生产尚属起步阶段,市场前景十分广阔。

四氧化三铁因其比重大,磁性强的特点,在污水处理方面表现出了良好的性能。

四氧化三铁还可做颜料和抛光剂。

结构

四氧化三铁是铁的一种氧化物,其化学式为Fe3O4即FeO·(Fe2O3),相对分子质量为231.54。

四氧化三铁是中学阶段唯一可以被磁化的铁化合物。四氧化三铁中含有Fe和Fe,X射线衍射实验表明,四氧化三铁具有反式尖晶石结构,晶体中从来不存在偏铁酸根离子FeO₂。四氧化三铁,又称磁性氧化铁、氧化铁黑、磁铁、磁石、吸铁石,天然矿物类型为磁铁矿。铁在四氧化三铁中有两种化合价,为反式尖晶石结构,即[FeⅢ]t[FeⅢFeⅡ]oO₄,氧做立方最密堆积。另外,四氧化三铁还是导体,因为在磁铁矿中由于Fe与Fe在八面体位置上基本上是无序排列的,电子可在铁的两种氧化态间迅速发生转移,所以四氧化三铁固体具有优良的导电性。

全解

介绍

在这里采用问答的方法来解答关于四氧化三铁的种种问题

性质

Q:能否简单介绍Fe3O4的性质

A:黑色的Fe3O4是铁的一种混合价态氧化物,熔点为1597℃,密度为5.17g/cm3,不溶于水,可溶于酸,在自然界中以磁铁矿的形态出现,常温时具有强的亚磁铁性与颇高的导电率。

(也有文献指出Fe3O4的熔点为1538℃,不溶于酸)

Q:磁铁用火烧会失去磁性,Fe3O4的磁性受温度影响吗?

A:铁磁性和亚铁磁性物质在Curie温度以上发生二级相变转变为顺磁性物质。Fe3O4的Curie温度为585℃

Q:这几种磁性有什么区别呢?

A:可把物质的磁性分为五类:

(a)抗磁性(反磁性):物质中全部电子在原子轨道或分子轨道上都已双双配对、自旋相反,没有永久磁矩。

(b)顺磁性:原子或分子中有未成对电子存在,存在永久磁矩,但磁矩间无相互作用。

(c)铁磁性:每个原子都有几个未成对电子,原子磁矩较大,且相互间有作用,使原子磁矩平行排列。

(d)亚铁磁性(铁氧体磁性):相邻原子磁矩部分呈现不相等的反平行排列。

(e)反铁磁性:在Néel温度以上呈顺磁性;在低于Néel温度时,磁矩间相邻原子磁矩呈现相等的反平行排列。

Q:铁只有Fe3O4这种氧化物具有顺磁性吗?

A:这是不正确的,如γ—Fe2O3同样具有亚铁磁性

不幸的是,在中学阶段,这种物质完全没有被提及。

Q:为什么Fe3O4有高的电导率?

A:可以把Fe3O4不平常的电化学性质归因于电子在Fe2+与Fe3+之间的传递

理化性质

物理性质

黑色的Fe3O4是铁的一种混合价态氧化物,熔点为1597℃,密度为5.18g/cm3,不溶于水,可溶于酸溶液,在自然界中以磁铁矿的形态出现,常温时具有强的亚磁铁性与颇高的导电率。

铁磁性和亚铁磁性物质在居里(Curie)温度以上发生二级相变转变为顺磁性物质。Fe3O4的居里温度为585℃。

可将物质的磁性分为五类:

(a) 抗磁性(反磁性):物质中全部电子在原子轨道或分子轨道上都已双双配对、自旋相反,没有永久磁矩。

(b) 顺磁性:原子或分子中有未成对电子存在,存在永久磁矩,但磁矩间无相互作用。

(c) 铁磁性:每个原子都有几个未成对电子,原子磁矩较大,且相互间有作用,使原子磁矩平行排列。

(d) 亚铁磁性(铁氧体磁性):相邻原子磁矩部分呈现不相等的反平行排列。

(e) 反铁磁性:在Néel温度以上呈顺磁性;在低于Néel温度时,磁矩间相邻原子磁矩呈现相等的反平行排列。

Fe3O4有高的电导率,可以将Fe3O4不平常的电化学性质归因于电子在Fe2+与Fe3+之间的传递。

化学性质

铁丝在氧气里燃烧会生成四氧化三铁,比较铁的氧化物的标准摩尔生成Gibbs自由能的大小,得出Fe3O4的热力学稳定性最大,因此产物是Fe3O4。

铁与空气接触就会在其表面上形成氧化物,此时,氧化物膜本身的化学组成并非均匀。如一块低碳钢可以为三种氧化物膜所覆盖:与金属接触的是FeO,与空气接触的一侧是Fe2O3,中间则是Fe3O4。更确切地说,也许是三种氧化物的饱和固溶体的混合物构成钢铁表面的氧化膜层。

同时,氧化物膜的厚度也视氧化时的不同环境条件而变化。室温下,干燥空气中相对较纯的铁上氧化物的厚度不超过20埃(1埃=0.1纳米)但在潮湿空气中氧化物膜的厚度明显增加,可以看到表面上的锈斑。此时氧化物的沉积是分层的,接近金属的一侧是致密的无定形无水层,接近空气一侧是厚的多孔水化层。

铁与水蒸气反应生成Fe3O4和氢气。

Fe3O4有抗腐蚀效果,如钢铁制件的发蓝(又称烧蓝和烤蓝)就是利用碱性氧化性溶液的氧化作用,在钢铁制件表面形成一层蓝黑色或深蓝色Fe3O4薄膜,以用于增加抗腐蚀性、光泽和美观。

常见化学反应

(1)在高温下,易氧化成氧化铁。4Fe3O4+O2=高温=6Fe2O3

(2)在高温下可与还原剂CO、Al,C等反应。3Fe3O4+8Al=4Al2O3+9FeFe3O4+4CO=高温=3Fe+4CO2

(3)在加热条件下可与还原剂氢气发生反应。Fe3O4+4H2=加热=3Fe+4H2O

(4)二氧化氮和灼热的铁粉反应生成四氧化三铁和氮气2NO2+3Fe=高温=Fe3O4+N2

(5)铁在氧气中燃烧生成四氧化三铁2O2+3Fe=点燃=Fe3O4

(6)水蒸气和炽热的铁反应生成四氧化三铁4H2O+3Fe=高温=Fe3O4+4H2

(7)和酸反应Fe3O4+8HCl=2FeCl3+FeCl2+4H2O

生产方法

α-氧化铁的氢气还原法

将高纯微粉状α-Fe2O3装入盘中,粉末层不应过厚。将盘放入反应管之后,通入高纯氮气将空气完全置换出去。接着通过洗气瓶慢慢送入经水饱和的氢气。加热温度在300~400℃(例如330℃)比较适当。确证反应完了(通常1~3h)后冷却,停止送氢气,再用氮气置换之后,取出样品。水蒸气量不足,加热温度过高或还原过度都会生成FeO,因此必须注意。提高洗气瓶温度就可以增加水蒸气量(40~60℃比较适宜)。以针状α-FeO(OH)为起始原料经加热脱水则得α-Fe2O3。用这种α-Fe2O3就可制得针状四氧化三铁粒子。黑色录音磁带就是用这种四氧化三铁作为磁带录音媒介。 [2] 

加合法

将铁屑与硫酸反应制得硫酸亚铁,再加入烧碱和氧化铁在95~105℃进行加合反应生成四氧化三铁,经过滤、烘干、粉碎制得氧化铁黑。

氢氧化亚铁的缓慢氧化法

将含有氢氧化亚铁沉淀的水溶液加热到70℃以上,进行缓慢的氧化,就可以得到由棱长大约0.2μm的相当均匀的正八面体或立方单晶粒子组成的四氧化三铁粉末。也可以用输送空气泡作为氧化的手段。还可以用像KNO3那样的氧化剂。

Harber法

操作熟练的话可以得到化学计算组成为Fe3.00O4.00的四氧化三铁,Harber法将220g 20%氨水加到2.2L FeSO4·7H2O水溶液,在断绝空气的条件下煮沸(可以用装有毛细管的圆底烧瓶),在煮沸中加入含有25.5g KNO3的浓水溶液。

加碱法

硫酸亚铁溶液加碱氧化或将铁盐和亚铁盐的溶液按一定比例混合后加碱沉淀制得。

储存方式

储存注意事项:贮存于通风,干燥的库房中。包装应密封、防潮。避免高温,并与酸、碱物品隔离存放。

纳米级别

简介

四氧化三铁具有铁磁性,如果形成颗粒半径在纳米级别,称为四氧化三铁磁性颗粒。

反应原理

2013来,有关纳米Fe3O4制备的文献大量涌现,一些新型的制备工艺也不断出现。传统制备纳米Fe3O4的方法主要有沉淀法、水热(溶剂热)法、微乳化法、溶胶-凝胶法。新兴的制备方法如微波法、热解羰基前躯体法、超声法、空气氧化法、热解-还原法、多元醇还原法等正逐渐成为学者们研究的热点。在相关制备Fe3O4的方法中,新型的表面活性剂、制备体系也都有所突破。表面活性剂已经不仅仅局限于SDS、PEG、CTAB、柠檬酸、油酸等,用NSOCMCS、聚丙烯酰胺作修饰剂也有于报道。制备体系也相继出现乙醇-水体系、正丙醇-水、丙二醇-水体系等。

1、沉淀法

沉淀法由于其工艺操作简单成本较低,产品纯度高,组成均匀,适合于大规模生产,成为最常用的纳米颗粒的制备方法。同时,通过向沉淀混合液中加入有机分散剂或络合剂可提高纳米粒子的分散性,克服纳米粒子易团聚的缺点。常用的沉淀法有共沉淀法、水解沉淀法、超声沉淀法、醇盐水解法和螯合物分解法等。

(1)共沉淀法

共沉淀法在含有多种阳离子的溶液中加入沉淀剂,让所有离子完全沉淀。为了获得均匀的沉淀,通常将含有多种阳离子的盐溶液慢慢加入到过量的沉淀剂中进行搅拌,使所有离子的浓度大大超过沉淀的平衡浓度,尽量使各组分按比例同时析出来。

其原理是Fe+2Fe+8OH→Fe3O4+4H2O。

沉淀法制备纳米粒子时,Fe、Fe的摩尔比直接影响产物的晶体结构;溶液的pH值、离子浓度、反应温度等均影响微粒的尺寸大小。如何通过控制反映条件制备晶体结构单一、颗粒尺寸均匀的纳米颗粒是沉淀法所面临的主要问题。外沉淀剂的过滤、洗涤也是必须考虑的问题。

共沉淀法得到的四氧化三铁纳米粒子多为球形结构,粒径较小(5~10nm)。但由于该反应的温度比较低,所以得到的粒子的结晶性相对较差。而且,该法制备的纳米Fe3O4微粒沉淀在洗涤、过滤和干燥时颗粒间易发生团聚,会影响纳米Fe3O4的性能。

(2)水解沉淀法

水解沉淀法就是利用碱性物质的水解释放OH,常用的碱性物质有尿素、己二胺等,这些物质释放OH的速度比较慢,在制备纳米Fe3O4微粒时有利于生成颗粒均匀的纳米颗粒,通常这种方法能制备出颗粒分布在7nm到39nm的纳米颗粒。

2、水热(溶剂热)法

水热(溶剂热)反应是高温高压下在水溶液(有机溶剂)或蒸气等流体中进行的有关化学反应的总称。水热法是近十余年发展起来的一种制备纳米粉体的合成,用此法所制备的Fe3O4粒径小、粒度较均匀、不需要高温煅烧预处理,并可实现多价离子的掺杂。然而,由于水热法要求使用耐高温、高压的设备,因而此法成本较高,难以实现规模化生产。

水热法制备纳米Fe3O4大多采用无机铁盐(FeCl3·6H2O、FeCl2·4H2O、FeSO4)和有机铁盐(二茂铁Fe(C5H5)2)作为先驱体,以联氨、聚乙烯基乙二醇、PVP等作为表面活性剂,在低于200℃的碱性溶液条件下合成。

ShouhengSun用水热方法制备了粒径可控的超顺磁性Fe3O4颗粒。首先以Fe(acac)₃为Fe源制备粒径为4nm的Fe3O4颗粒,然后以粒径为4nm的Fe3O4颗粒为晶种,通过控制保温时间等因素分别制备了粒径分别为6、8、12、16nm的Fe3O4纳米颗粒。

ZhenLi等报道了采用常见的FeCl3·H2O替代价格昂贵的Fe(acac)作为前驱体,制备了₄纳米颗粒。

YadongLi等报道了以FeCl3·6H2O、NaAC、EG、PEG为原料制备了单分散性的Fe3O4纳米颗粒,且粒径尺寸可调。

应用

在当代电气化和信息化社会中,磁性材料的应用非常广泛。四氧化三铁磁性材料作为一种多功能磁性材料,在肿瘤的治疗、微波吸收材料、催化剂载体、细胞分离、磁记录材料、磁流体、医药等领域均已有广泛的应用,这种材料很有发展前景。

相关词条

相关搜索

其它词条