传输线

传输线

输送电磁能的线状结构的设备
传输线(transmission line)输送电磁能的线状结构的设备。[1]它是电信系统的重要组成部分,用来把载有信息的电磁波,沿着传输线规定的路由自一点输送到另一点。以横电磁(TEM)模的方式传送电能和(或)电信号的导波结构。传输线的特点是其横向尺寸远小于工作波长。主要结构型式有平行双导线、平行多导线、同轴线、带状线,以及工作于准TEM模的微带线等,它们都可借助简单的双导线模型进行电路分析。各种传输TE模、TM模,或其混合模的波导都可认为是广义的传输线。波导中电磁场沿传播方向的分布规律与传输线上的电压、电流情形相似,可用等效传输线的观点分析。
  • 中文名:传输线
  • 外文名:transmission line
  • 别名:
  • 注音:ㄔㄨㄢˊ ㄕㄨㄒㄧㄢˋ
  • 应用学科:电信

简介

音响系

统中各设备间连接线,其质量会直接影响音响系统的音质和声音还原质量。传输线对声音信号的影响不仅限于直流电阻,由于分布参数、趋肤效应、多芯线失真等因素影响,随之而来的涡流损耗和电磁感应会对音质起到一定的破坏作用,导致不同频率信号通过导线时,阻抗不尽相同,相移量也有所没。传输线对声音信号的影响取决于导体导体材质(如铜、无氧铜、金、铝等)、线的几何结构(如线径、股数、绞合方式、导线外绝缘材料)以及线的技术工艺等多方面。在满足使用要求的前提下,传输线应尽可能短且与设备接触良好,并注意屏蔽和抗干扰问题,尽量减少声音信号损失(包括幅度、频率和相位三方面损失),常用的传输线有音频屏蔽线、数字线和音箱线等。

分析

以横电磁(TEM)模的方式传送电能和(或)电信号的导波结构。传输线的特点是其横向尺寸远小于工作波长。主要结构型式有平行双导线、平行多导线、同轴线、带状线,以及工作于准TEM模的微带线等,它们都可借助简单的双导线模型进行电路分析。各种传输TE模、TM模,或其混合模的波导都可认为是广义的传输线。波导中电磁场沿传播方向的分布规律与传输线上的电压、电流情形相似,可用等效传输线的观点分析。

分类

按传输媒质和结构上的特点,传输线可分为双线传输线、微带传输线、波导管传输线、表面波传输线和光导纤维等类。

双线传输线

由两拫平行的导电金属线(一般为铜、钢或铝线)构成,传送横电磁波的传输线。按结构又可分为对称型和同轴型两类。我国广泛使用的架空明线、各种对绞电缆和星绞电缆,都属于对称型的双线传输线。中同轴和小同轴电缆则属于同轴型的双线传输线。

随着频率的提高,双线传输线的金属损耗和介质损耗都迅速增加。而且传输线的横向尺寸与波长相比已经不能忽略,对设备的制造工艺和维护标准都提出了更为严格的要求。特别是对称型双线传输线开放式的电磁场,回路间的耦合也愈为严重。因此传输频率较低。我国的高频对称电缆一般开放频率在252kHz以下的60路载波系统;中同轴电缆一般开放1800路载波通信系统,频率8.5MHz。

微带传输线

用于微波波段的一种不对称传输线,传输准TEM波。结构的形式较多,性能用途也不相同。标准微带的结构形式,是在较宽的接地金属带上方紧贴一层介质基片,基片的另一侧贴附一条较窄的金属长条。标准微带线是微波集成电路中常用的一种传输线。

波导管传输线

用于微波波段中由空心导电金属管构成的一种非TEM波传输线。波导管常用紫铜、黄铜等良导体制成,内壁还常镀有一层导电性能优良的银,使管壁具有很高的导电率。波导管的形状主要有圆形、矩形和椭圆形等多种。

波导管由于管壁导电面积大,导电率高,因而金属热损耗比较小,也没有辐射损耗(因为场是封闭的)和介质损耗(因为管内没有固体介质)。一般用于厘米波和毫米波段。

表面波传输线

由单根圆形截面的金属导体构成的波导,又称高-包线。导体表面复有一层某种与内部导体电特性不同的介质材料,可以露天悬挂,导引电磁波沿传输线的表面传输。

光纤传输线

利用光导纤维作传输媒质,引导光线在光纤内沿光纤规定的途径传输的传输线。根据传输模式的不同,可分为单模光纤与多模光纤两类。光纤传输线具有通信容量大、传输距离远、不受电磁干扰、抗腐蚀能力强、重量轻等许多技术上的优点,是本世纪70年代出现的一种受到广泛欢迎的传输线。

串扰

串扰(Crosstalk)也称“交调干扰”,主要源自两个相邻导体之间所形成的互感与互容,如图所示。串扰会随着印制板的走线布局密度增加而变得越来越严重,尤其是长距离的`总线结构和频率较高且强度较大的信号线,更容易发生串扰现象。这种现象是经由互感和互容这样的寄生参数,将能量由一个传输线耦合到相邻的传输线上而造成的,因此串扰实际上是一种典型的EMI问题。

串扰包括电容耦合和电感耦合,电容耦合(容性串扰)通常是因为走线位于另一走线上方或参考层上方。这种串扰在平行线之间的影响要小一些,两条较长的布线之间会有相互电容效应。当其中一条线上的电压发生变化时,在另一条线上就会产生容性串扰。即会出现一个小的正脉冲,如同电源电压变化而诱发的;电感耦合(感性串扰)是由于布线的电感造成的天线效应及信号间的公共阻抗对不同回路的影响。当一条导线的磁场在相邻信号上感应出信号时,就会发生串扰现象。只要有开关电流引起的磁场,就会产生瞬时耦合电压。通常,微带线的串扰较带状线严重。

根据串扰所发生的位置,可将串扰分为前向串扰和后向串扰。信号从源端传输到负载端,将发生前向串扰;如果信号被反射到源端,就会发生后向串扰。互容性耦合对前向串扰来说是正,而对后向串扰来说为负。在一般情况下,后向串扰对系统的影响要比前向串扰大。

串扰不仅会出现在时钟或周期信号线上,同样会出现在数据、地址、控制和LO走线中,因此必须尽量避免。串扰值与介电常数、线宽和间距有关。

为在PCB板中避免串扰现象的发生,推荐以下布线建议。

提供正确的终端匹配阻抗,从而消除后向串扰。

尽可能减小布线的长度。

避免互相平行的走线布局,并保证走线间有一定的间隔,从而减小走线间的耦合。

降低走线的阻抗和信号的驱动电平。

尽量隔离时钟及高速互连等EMI较差的信号。

减小器件间的距离,器件布局合理。

敏感的器件尽量远离I/O互连接口、时钟及易受数据干扰和耦合影响的区域。

相关词条

相关搜索

其它词条